首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   5篇
  2016年   4篇
  2015年   11篇
  2014年   22篇
  2013年   23篇
  2012年   25篇
  2011年   19篇
  2010年   13篇
  2009年   11篇
  2008年   19篇
  2007年   13篇
  2006年   16篇
  2005年   21篇
  2004年   16篇
  2003年   23篇
  2002年   11篇
  2001年   4篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1966年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
291.
Activation of the nuclear factor (NF)-κB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-κB activity. Using this mouse model and an NF-κB-targeted gene array, we first determined the components of NF-κB signaling cascade and the NF-κB-linked genes that are expressed during the progression to cardiac hypertrophy and HF. Second, we explored the effects of inhibition of NF-κB signaling events by using a gene knockdown approach: RNA interference through delivery of a short hairpin RNA against NF-κB p65 using a lentiviral vector (L-sh-p65). When the short hairpin RNA was delivered directly into the hearts of 10-week-old Myo-Tg mice, there was a significant regression of cardiac hypertrophy, associated with a significant reduction in NF-κB activation and atrial natriuretic factor expression. Our data suggest, for the first time, that inhibition of NF-κB using direct gene delivery of sh-p65 RNA results in regression of cardiac hypertrophy. These data validate NF-κB as a therapeutic target to prevent hypertrophy/HF.  相似文献   
292.
Myotrophin, a 12-kDa ankyrin repeat protein, stimulates protein synthesis and cardiomyocyte growth to initiate cardiac hypertrophy by activating the NF-kappaB signaling cascade. We found that, after internalization into myocytes, myotrophin cotranslocates into the nucleus with p65 to stimulate myocyte growth. We used structure-based mutations on the hairpin loops of myotrophin to determine the effect of the loops on myotrophin and p65 localization, induction of protein synthesis, and cardiac hypertrophy. Loop mutants, most prominently glutamic acid 33-->alanine (E33A), stimulated protein synthesis much less than wild type. Myotrophin-E33A internalized into myocytes but did not translocate into the nucleus and failed to promote nuclear translocation of p65. In addition, two cardiac hypertrophy marker genes, atrial natriuretic factor and beta-myosin heavy chain, were not up-regulated in E33A-treated cells. Myotrophin-induced myocyte growth and initiation of hypertrophy thus require nuclear co-translocation of myotrophin and p65, in a manner that depends crucially on the myotrophin hairpin loops.  相似文献   
293.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   
294.
Presently the gold standard diagnostic technique for rabies is the direct immunofluorescence assay (dFA) which is very expensive and requires a high level of expertise. There is a need for more economical and user friendly tests, particularly for use in developing countries. We have established one such test called the direct rapid immunohistochemical test (dRIT) for diagnosis of rabies using brain tissue. The test is based on capture of rabies nucleoprotein (N) antigen in brain smears using a cocktail of biotinylated monoclonal antibodies specific for the N protein and color development by streptavidin peroxidase-amino ethyl carbazole and counter staining with haematoxollin. The test was done in parallel with standard FAT dFA using 400 brain samples from different animals and humans. The rabies virus N protein appears under light microscope as reddish brown particles against a light blue background. There was 100 % correlation between the results obtained by the two tests. Also, interpretation of results by dRIT was easier and only required a light microscope. To conclude, this newly developed dRIT technique promises to be a simple, cost effective diagnostic tool for rabies and will have applicability in field conditions prevalent in developing countries.  相似文献   
295.
296.
The homopteran group of polyphagous sucking insect pests causes severe damage to many economically important plants including tobacco. Allium sativum leaf lectin (ASAL), a mannose-binding 25-kDa homodimeric protein, has recently been found to be antagonistic to various sucking insects in the homopteran group through artificial diet bioassay experiments. The present study describes, for the first time, the expression of the ASAL coding sequence under the control of the cauliflower mosaic virus (CaMV) 35S promoter in tobacco by Agrobacterium-mediated transformation technology. Molecular analyses demonstrated the integration of the chimeric ASAL gene in tobacco and its inheritance in the progeny plants. Western blot analysis followed by enzyme-linked immunosorbent assay (ELISA) determined the level of ASAL expression in different lines to be in the range of approximately 0.68%-2% of total soluble plant protein. An in planta bioassay conducted with Myzus persicae, peach potato aphid (a devastating pest of tobacco and many other important plants), revealed that the percentage of insect survival decreased significantly to 16%-20% in T0 plants and T1 progeny, whilst approximately 75% of insects survived on untransformed tobacco plants after 144 h of incubation. Ligand analyses of insect brush border membrane vesicle receptors and expressed ASAL in transgenic tobacco showed that the expressed ASAL binds to the aphid gut receptor in the same manner as native ASAL, pointing to the fact that ASAL maintains the biochemical characteristics even in the transgenic situation. These findings in a model plant open up the possibility of expressing the novel ASAL gene in a wide range of crop plants susceptible to various sap-sucking insects.  相似文献   
297.
Cancer progression depends on an accumulation of metastasis supporting cell signaling molecules that target signal transduction pathways and ultimately gene expression. Osteopontin (OPN) is one such chemokine like metastasis gene which plays a key signaling event in regulating the oncogenic potential of various cancers by controlling cell motility, invasiveness and tumor growth. We have reported that OPN stimulates tumor growth and nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 (pro-MMP-2) activation through IkappaBalpha/IKK (IkappaBalpha kinase) signaling pathway in melanoma cells. Urokinase type plasminogen activator (uPA), a widely acting serine protease degrades the ECM components and plays a pivotal role in cancer progression. However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and uPA secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt/PKB (protein kinase B) in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with dominant negative mutant of p85 domain of PI 3'-kinase (Deltap85) indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. OPN also enhances uPA secretion, cell motility and ECM-invasion. Furthermore, cells transfected with Deltap85 or super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility. Pretreatment of cells with PI 3'-kinase inhibitors or NFkappaB inhibitory peptide (SN50) reduced the OPN-induced uPA secretion, cell motility and ECM-invasion. Taken together, OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN induced PI 3'-kinase dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility and invasiveness of breast cancer cells.  相似文献   
298.
299.
Treatment of microsomes (preferentially enriched with endoplasmic reticulum) isolated from bovine pulmonary artery smooth muscle tissue with H2O2 (1 mM) markedly stimulated matrix metalloproteinase activity and also inhibited Na+ dependent Ca2+ uptake. Electron micrograph revealed that H2O2 (1 mM) does not cause any damage to the microsomes. MMP-2 and TIMP-2 were determined to be the ambient protease and corresponding antiprotease of the microsomes. Pretreatment with vitamin E (1 mM) and TIMP-2 (50 g/ml) reversed the effect produced by H2O2 (1 mM) on Na+ dependent Ca2+ uptake in the microsomes. However, H2O2 (1 mM) caused changes in MMP-2 activity and Na+ dependent Ca2+ uptake were not reversed upon pretreatment of the microsomes with a low concentration of 5 g/ml of TIMP-2 which otherwise reversed MMP-2 (1 g/ml) mediated increase in 14C-gelatin degradation and inhibition of Na+ dependent Ca2+ uptake. Combined treatment of the microsomes with a low dose of MMP-2 (0.5 g/ml) and H2O2 (0.5 mM) inhibited Na+ dependent Ca2+ uptake in the microsomes compared to the respective low dose of either of them. Direct treatment of TIMP-2 (5 g/ml) with H2O2 (1 mM) abolished the inhibitory effect of the inhibitor on 14C-gelatinolytic activity elicited by 1 g/ml of MMP-2. Thus, one of the mechanisms by which H2O2 activates MMP-2 could be due to inactivation of TIMP-2 by the oxidant. The resulting activation of MMP-2 subsequently inhibits Na+ dependent Ca2+ uptake in the microsomes. (Mol Cell Biochem 270: 79–87, 2005)  相似文献   
300.
The reason for secretion of nucleoside diphosphate kinase (NdK), an enzyme involved in maintaining the cellular pool of nucleoside triphosphates in both prokaryotes and eukaryotes, by Mycobacterium tuberculosis is intriguing. We recently observed that NdK from M.tuberculosis (mNdK) localizes within nuclei of HeLa and COS-1 cells and also nicks chromosomal DNA in situ (A. K. Saini, K. Maithal, P. Chand, S. Chowdhury, R. Vohra, A. Goyal, G. P. Dubey, P. Chopra, R. Chandra, A. K. Tyagi, Y. Singh and V. Tandon (2004) J. Biol. Chem., 279, 50142–50149). In the current study, using a molecular beacon approach, we demonstrate that the mNdK catalyzes the cleavage of single strand DNA. It displays Michaelis–Menten kinetics with a kcat/KM of 9.65 (±0.88) × 106 M−1 s−1. High affinity (KdKM of ~66 nM) and sequence-specific binding to the sense strand of the nuclease hypersensitive region in the c-myc promoter was observed. This is the first study demonstrating that the cleavage reaction is also enzyme-catalyzed in addition to the enzymatic kinase activity of multifunctional NdK. Using our approach, we demonstrate that GDP competitively inhibits the nuclease activity with a KI of ~1.9 mM. Recent evidence implicates mNdK as a potent virulence factor in tuberculosis owing to its DNase-like activity. In this context, our results demonstrate a molecular mechanism that could be the basis for assessing in situ DNA damage by secretory mNdK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号