首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   16篇
  国内免费   1篇
  351篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   5篇
  2016年   4篇
  2015年   11篇
  2014年   22篇
  2013年   23篇
  2012年   25篇
  2011年   19篇
  2010年   13篇
  2009年   11篇
  2008年   19篇
  2007年   13篇
  2006年   16篇
  2005年   21篇
  2004年   16篇
  2003年   23篇
  2002年   11篇
  2001年   4篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1966年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
131.
During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occur s , which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin‐3‐gallate (EGCG) on the TxA2 mimetic, U46619‐induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p38MAPK, NF‐κB and MMP‐2 significantly inhibit U46619‐induced cell proliferation. EGCG markedly abrogate U46619‐induced p38MAPK phosphorylation, NF‐κB activation, proMMP‐2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619‐induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP‐2 markedly abrogate U46619‐induced SMase activity and S1P level. EGCG markedly inhibit U46619‐induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline–Ceramide–Sphingosine‐1‐phosphate (Spm–Cer–S1P) signalling axis plays an important role in MMP‐2 mediated U46619‐induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP‐2 activation by modulating p38MAPK–NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
132.
In the context of clinical and non‐clinical biomedical practices, negligence is usually understood as a lapse of a specific professional duty by a healthcare worker or by a medical facility. This paper tries to delineate systemic negligence as another kind of negligence in the context of health systems, particularly in developing countries, that needs to be recognized and addressed. Systemic negligence is not just a mere collection of stray incidences of medical errors and system failures in a health system, but is proposed in this paper as a more pervasive kind of neglect. Several non‐medical factors, such as lack of social and political will, also contribute to it and hence is more difficult to address in a health system. This paper argues that recognizing systemic negligence and including it research agenda have special moral importance for researchers in developing world bioethics, public health ethics and for health activists in the developing world. For, it can be a potent health system barrier, and can seriously impair efforts to ensure patient safety, particularly in the weaker health systems. As it erodes accountability in a health system, addressing it is also important for the twin goals of ensuring patient safety and improving health system performance. Above all, it needs to be addressed because the tolerance of its persistence in a health system seems to undervalue health as a social good.  相似文献   
133.
134.
135.
In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub‐family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing ‘half transporters’ are semi‐dominant and result in vascular patterning defects in cotyledons and the floral stem. Co‐immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.  相似文献   
136.
137.
Bovine pulmonary artery smooth muscle tissue possesses matrix metalloproteinase-2 (72 kDa gelatinase: MMP-2; E.C. 3.4.24.24) as revealed by immunoblot studies of its plasma membrane suspension with polyclonal MMP-2 antibody. In this report, we described the purification and partial characterization of MMP-2 in the plasma membrane fraction of the smooth muscle. MMP-2 has been purified from plasma membrane fraction of bovine pulmonary artery smooth muscle to homogeneity using a combination of purification steps. Heparin sepharose purified preparation of 72 kDa progelatinase is composed of two distinct population of zymogens: a 72 kDa progelatinase tightly complexed with TIMP-2 (an ambient tissue inhibitor of metalloprotease in the smooth muscle plasma membrane), and a native 72 kDa progelatinase free of any detectable TIMP-2. The homogeneity of the native 72 kDa progelatinase form is demonstrated by SDS-PAGE under non-reducing condition, non-denaturing native gel electrophoresis. The purified TIMP-2 free proenzyme electrophoresed as a single band of 72 kDa which could be activated by APMA with the formation of 62 and 45 kDa active species. The proenzyme is activated poorly by trypsin but not by plasmin. The purified 72 kDa progelatinase is stable at aqueous solution and does not spontaneously autoactivate. The purified 72 kDa gelatinase exhibited properties that are typical of MMP-2 obtained from other sources. These are: (i) its activity is dependent on the divalent cation, Ca+2, and is inhibited by EDTA, EGTA and 1:1 0-phenanthroline; (ii) it was inhibited by a, macroglobulin but not by the inhibitors of serine, cysteine, thiol, aspartic proteinases and calpains; (iii) it was found to be inhibited by TIMP-2, the specific inhibitor of MMP-2; (iv) like MMP-2, obtained from other sources, its major substrates were found to be collagens (type IV and V) and gelatins (type I, IV and V). Additionally, the purified MMP-2 degrades Dnp-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-OH (dinitrophenyl labelled peptide), a well known synthetic substrate for the MMP-2.  相似文献   
138.
Exposure of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant H2O2 (1 mM) stimulated Ca2+ATPase activity. We sought to determine the role of matrix metalloprotease-2 (MMP-2) in stimulating Ca2+ATPase activity by H2O2 in the smooth muscle plasma membrane. The smooth muscle membrane possesses a Ca2+-dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA, 1: 10-phenanthroline, a2-macroglobulin and tissue inhibitor of metalloprotease-2 (TIMP-2) indicating that the Ca2+-dependent 72 kDa protease is the MMP-2. Western immunoblot studies of the membrane suspension with polyclonal antibodies of MMP-2 and TIMP-2 revealed that MMP-2 and TIMP-2, respectively, are the ambient matrix metalloprotease and the corresponding tissue inhibitor of metalloprotease in the membrane. In addition to increasing the Ca2+ATPase activity, H2O2 also enhanced the activity of the smooth muscle plasma membrane associated protease activity as evidenced by its ability to degrade14C-gelatin. The protease activity and the Ca2+ATPase activity were prevented by the antioxidant, vitamin E, indicating that the effect produced by H2O2 was due to reactive oxidant species(es). Both basal and H2O2 stimulated MMP-2 activity and Ca2+ATPase activity were inhibited by the general inhibitors of matrix metalloproteases: EGTA, 1: 10-phenanthroline, α2-macroglobulin and also by TIMP-2 (the specific inhibitor of MMP-2) indicating that H2O2 increased MMP-2 activity and that subsequently stimulated Ca2+ATPase activity in the plasma membrane. This was further confirmed by the following observations: (i) adding low doses of MMP-2 or H2O2 to the smooth muscle membrane suspension caused submaximal increase in Ca2+ATPase activity, and pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity; (ii) combined treatment of the membrane with low doses of MMP-2 and H2O2 augments further the Ca2+ATPase activity caused by the respective low doses of either H2O2 or MMP-2; and (iii) pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity in the membrane caused by the combined treatment of MMP-2 and H2O2.  相似文献   
139.
Summary The production of amylolytic enzymes by a thermophilic cellulolytic fungus,Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45° C. Among various nitrogenous compounds used, NaNO3 and KNO3 were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50° C–60° C) and displayed activity optima at 60° C and pH 5.6.  相似文献   
140.
Porins form trimers in the outer membrane and help transport nutrients and waste products across the bacterial cell membrane. Porin loops are suitable candidates as display systems due to their high immunogenicity and presentation at the bacterial cell surface. In this study, Salmonella typhi porins (OmpC and OmpF) engineered with the Kennedy peptide from gp41 of HIV were characterised. The chimeric OmpC carrying the Kennedy peptide in loop7 did not trimerise, whereas the chimeric OmpF with the epitope in loop5 formed trimers and also was recognised by the antibodies in the HIV patient serum. The results suggest that chimeric S. typhi OmpF may be taken further as a potential candidate to develop as an epitope display system. Proteins 2017; 85:657–664. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号