首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   11篇
  2021年   2篇
  2017年   1篇
  2014年   2篇
  2013年   5篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   9篇
  2006年   8篇
  2005年   6篇
  2004年   3篇
  2003年   7篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
21.

Background  

Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs) in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus.  相似文献   
22.
23.
24.
Docosahexaenoic acid (DHA; 22:6 n-3) is an essential fatty acid required for the normal function of several tissues, especially the brain. Previous studies suggested that lysophosphatidylcholine (lysoPC) is a preferred carrier of DHA to the brain, although the pathways of the formation of DHA-containing lysophospholipids in plasma have not been delineated. We propose that endothelial lipase (EL), a phospholipase A1 that plays an important role in the metabolism of high density lipoproteins, may be responsible for the generation of DHA lysophospholipids in plasma. Here we studied the substrate specificity of EL using deuterium-labeled phospholipids with different polar head groups, as well as DHA-enriched natural phospholipids to test this hypothesis. Glycerol-stabilized phospholipids were treated with recombinant EL, and the products were analyzed by liquid chromatography/electrospray ionization mass spectrometry. EL showed the polar head group specificity in the order of phosphatidylethanolamine>phosphatidylcholine>phosphatidylserine>phosphatidic acid. Within the same phospholipid class, the enzyme showed preference for the species containing DHA at the sn-2 position, and was inactive in the hydrolysis of phospholipids containing an ether linkage. Since EL is known to be secreted by the cells of blood-brain barrier, we suggest that it plays an important role in the delivery of DHA lysophospholipid carriers to the brain.  相似文献   
25.
We previously showed that group V secretory phospholipase A(2) (sPLA(2)V) is inhibited by sphingomyelin (SM), but activated by ceramide. Here, we investigated the effect of sphingolipid structure on the activity and acyl specificity of sPLA(2)V. Degradation of HDL SM to ceramide, but not to ceramide phosphate, stimulated the activity by 6-fold, with the release of all unsaturated fatty acids being affected equally. Ceramide-enrichment of HDL similarly stimulated the release of unsaturated fatty acids. Incorporation of SM into phosphatidylcholine (PC) liposomes preferentially inhibited the hydrolysis of 16:0-20:4 PC. Conversely, SMase C treatment or ceramide incorporation resulted in preferential stimulation of hydrolysis of 16:0-20:4 PC. The presence of a long chain acyl group in ceramide was essential for the activation, and long chain diacylglycerols were also effective. However, ceramide phosphate was inhibitory. These studies show that SM and ceramide in the membranes and lipoproteins not only regulate the activity of phospholipases, but also the release of arachidonate, the precursor of eicosanoids.  相似文献   
26.
Calcium-Mediated Responses of Maize to Oxygen Deprivation   总被引:6,自引:3,他引:3  
Oxygen limitation dramatically alters the patterns of gene expression as well as development of plants. Complete removal of O2 leads to an immediate cessation of protein synthesis followed by a selective synthesis of about twenty anaerobic proteins in maize (Zea mays L.) seedlings. Among these are enzymes involved in glycolysis and related processes. However, inducible genes that have different functions were also found; they may function in other, perhaps more long-term, processes of adaptations to flooding, such as aerenchyma formation and root-tip death. Our recent research has addressed two questions: how these gene expression changes are initiated and how do these responses culminate in the overall adaptation of plants to flooding-stress. The results obtained indicate that an early rise in cytosolic Ca2+ as well as a quick establishment of ionic homeostasis may be essential for the induction of adaptive changes at the cellular as well as organismal level.  相似文献   
27.
We previously showed that sphingomyelin (SM) inhibits peroxidation of phosphatidylcholine (PC) and cholesterol. Since SM uniquely has a trans unsaturation in its sphingosine base, we investigated whether this feature is important for its antioxidant function. Substitution of the natural trans Δ4-double bond with a cis double bond (cis-SM), however, increased SM’s ability to inhibit Cu2+-mediated 16:0-18:2 PC oxidation by up to eightfold. Dihydro-SM, which lacks the double bond, was equally effective as trans-SM. In contrast to its effect in the sphingosine base, the presence of a cis double bond in the N-acyl group of trans-SM was not protective. cis-SM also inhibited the oxidation of cholesterol by FeSO4/ascorbate more efficiently than the trans isomer. The enhanced protective effect of cis-SM is selective for metal ion-promoted oxidation, and appears to arise from a decrease in the effective concentration of metal ions. These studies show that the trans double bond of SM is not essential for its antioxidant effects.  相似文献   
28.
Over 250 PDZ (PSD95/Dlg/ZO-1) domain-containing proteins have been described in the human proteome. As many of these possess multiple PDZ domains, the potential combinations of associations with proteins that possess PBMs (PDZ-binding motifs) are vast. However, PDZ domain recognition is a highly specific process, and much less promiscuous than originally thought. Furthermore, a large number of PDZ domain-containing proteins have been linked directly to the control of processes whose loss, or inappropriate activation, contribute to the development of human malignancies. These regulate processes as diverse as cytoskeletal organization, cell polarity, cell proliferation and many signal transduction pathways. In the present review, we discuss how PBM-PDZ recognition and imbalances therein can perturb cellular homoeostasis and ultimately contribute to malignant progression.  相似文献   
29.
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.  相似文献   
30.
Fatty acids (FAs) have long been recognized for their nutritional value in the absence of glucose, and as necessary components of cell membranes. However, FAs have other effects on cells that may be less familiar. Polyunsaturated FAs of dietary origin (n–6 andn–3) cannot be synthesized by mammals, and are termed essential because they are required for the optimal biologic function of specialized cells and tissues. However, they do not appear to be necessary for normal growth and metabolism of a variety of cells in culture. The essential fatty acids (EFAs) have received increased attention in recent years due to their presumed involvement in cardiovascular disorders and in cancers of the breast, pancreas, colon and prostate. Manyin vitro systems have emerged which either examine the role of EFAs in human disease directly, or utilize EFAs to mimic thein vivo cellular environment. The effects of EFAs on cells are both direct and indirect. As components of membrane phospholipids, and due to their varying structural and physical properties, EFAs can alter membrane fluidity, at least in the local environment, and affect any process that is mediated via the membrane. EFAs containing 20 carbons and at least three double bonds can be enzymatically converted to eicosanoid hormones, which play important roles in a variety of physiological and pathological processes. Alternatively, EFAs released into cells from phospholipids can act as second messengers that activate protein kinase C. Furthermore, susceptibility to oxidative damage increases with the degree of unsaturation, a complication that merits consideration because lipid peroxidation can lead to a variety of substances with toxic and mutagenic properties. The effects of EFAs on cultured cells are illustrated using the responses of normal and tumor human mammary epithelial cells. A thorough evaluation of EFA effects on commercially important cells could be used to advantage in the biotechnology industry by identifying EFA supplements that lead to improved cell growth and/or productivity.Abbreviations AA arachidonic acid (20 carbons: 4 double bonds,n–6) - BHA butylated hydroxyanisole - BHT butylated hydroxytoluene - cAMP cyclic adenosine monophosphate - CHO Chinese hamster ovary - DAG diacylglycerol - DGLNA dihomo--linolenic acid (203,n–6) - DHA docosahexaenoic acid (226,n–3) - EFA essential fatty acid - EGF epidermal growth factor - EGFR epidermal growth factor receptor - EPA eicosapentaenoic acid (205,n–3) - FA fatty acid - FBS fetal bovine serum - GLNA -linolenic acid (183,n–6) - LA linoleic acid (182,n–6) - LNA -linolenic acid (183,n–3) - LT leukotriene - MDA malondialdehyde - NAD nicotinamide adenine dinucleotide - NDGA nordihydroguaiaretic acid - OA oleic acid (181,n–9) - PG prostaglandin - PKC protein kinase C - PUFA polyunsaturated fatty acid - SFM serum-free medium - TX thromboxane  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号