首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   11篇
  2021年   2篇
  2017年   1篇
  2014年   1篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
81.
In addition to their importance as essential agrochemicals and life-saving drugs, small molecules serve as powerful research tools to address questions at all levels of biological complexity from protein function to plant biotic interactions. In certain contexts, chemical tools are complementary or even preferred to genetic analysis, since not all experimental systems are amenable for genetic dissection. For example, mutants impaired in oxygen sensing cannot easily be recovered. Pharmacological and chemical genetics approaches have come to the rescue of biologists in unraveling such genetically intractable systems. In this review, I have discussed my own efforts to analyze oxygen deprivation signaling in plants to illustrate the validity of small molecular approaches in elucidating an essential pathway such as oxygen sensing. Chemical biology is also a potent approach to tease out genetically redundant biological processes. The recent breakthrough in identifying the elusive abscisic acid receptors has clearly demonstrated the power of chemical tools in dissecting redundant pathways and led to the blossoming of this area as a distinct discipline of plant biology research. I present a summary of this work and conclude the review with potential challenges in using chemical tools.  相似文献   
82.
The lysolecithin acyltransferase of human plasma is shown to be associated with the high-density lipoprotein fraction. Although the low density lipoproteins do not have intrinsic enzyme activity, their presence activated the enzyme 3--7-fold. This activation is not affected by heat-treatment of the low density lipoproteins, but is abolished by the addition of heparin.  相似文献   
83.
Although the conjugated linoleic acids (CLA) have several isomer-specific biological effects including anti-carcinogenic and anti-adipogenic effects, their mechanisms of action remain unclear. To determine their potential effects on membrane structure and function, we studied the incorporation profiles of four CLA isomers (trans-10 cis-12 (A), trans-9 trans-11 (B), cis-9 trans-11 (C), and cis-9 cis-11 (D)) in CHO and HepG2 cells. All four isomers were incorporated into cellular lipids as efficiently as linoleic acid (LA), with the majority of the incorporated CLA present in membrane rafts. Of the four isomers, only CLA-A increased the cholesterol content of the raft fraction. Over 50% of the incorporated CLAs were recovered in phosphatidylcholine of CHO cells, but in HepG2 the neutral lipids contained the majority of CLA. The desaturation index (18:1/18:0 and 16:1/16:0) was reduced by CLA-A, but increased by CLA-B, the effects being apparent mostly in raft lipids. The Δ? desaturase activity was inhibited by CLAs A and C. Unlike LA, which was mostly found in the sn-2 position of phospholipids, most CLAs were also incorporated significantly into the sn-1 position in both cell types. These studies show that the incorporation profiles of CLA isomers differ significantly from that of LA, and this could lead to alterations in membrane function, especially in the raft-associated proteins.  相似文献   
84.
Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is believed to have anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be associated with anti-obesity effects. In this paper we extend earlier molecular dynamics (MD) simulations of pure CLA–phosphatidylcholine bilayers to investigate the comparative effects of cholesterol on bilayers composed of the two respective isomers. Simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed in which, for each isomer, the simulated bilayers contained 10% and 30% cholesterol (Chol). From MD trajectories we calculate and compare structural properties of the bilayers, including areas per molecule, thickness of bilayers, tilt angle of cholesterols, order parameter profiles, and one and two-dimensional radial distribution function (RDF), as functions of Chol concentration. While the structural effect of cholesterol is approximately the same for both isomers, we find differences at an atomistic level in order parameter profiles and in two-dimensional radial distribution functions.  相似文献   
85.
Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol.  相似文献   
86.
A unique, efficient, highly sensitive and selective fluorescent chemosensor for fenitrothion has been reported for the first time using per-6-amino-β-cyclodextrin:Eu(III) complex. Among the various pesticides, the sensitivity response is found to be in the order, fenitrothion>quinalphos>methylparathion>parathion>methylparaoxon>paraoxon>fenchlorphos>profenofos>malathion. A detection limit as low as 1 × 10(-12)M for fenitrothion sensing is realized with a 2.4% relative standard deviation (RSD) of three consecutive runs. The per-6-amino-β-cyclodextrin:Eu(III):pesticide complexes and their sensing mechanism are evidenced from emission, NMR, FT-IR, binding constant measurement, Job's plot, ICD spectra, ESI-MS, lifetime measurements and molecular modeling studies. The proposed sensing is a consequence of Absorption Energy Transfer Emission (AETE) process as a result of better encapsulation of fenitrothion inside the cavity of per-6-amino-β-cyclodextrin:Eu(III) complex. The remarkable sensitivity and selectivity of fenitrothion compared to other OPs, is attributed to a more deeper binding and tighter fit of fenitrothion inside the CD cavity, which is evident from binding constant values and molecular modeling studies. This tighter fit ensures the replacement of two coordinating water molecules on Eu(III) ion, which may have contributed to the more selective sensing of fenitrothion.  相似文献   
87.
The new hydrazinium lanthanide metal complexes of 2-pyrazinecarboxylic acid of the formulae (N2H5)2[Ln(pyzCOO)5] · 2H2O (1), where Ln = La or Ce and (N2H5)3[Ln(pyzCOO)4(H2O)] · 2NO3 (2), where Ln = Pr, Nd, Sm or Dy have been synthesized by the addition of an aqueous solution of corresponding metal nitrate hydrates to an aqueous mixture of carboxylic acid and hydrazine hydrate in an appropriate ratios. The structure of (N2H5)2[La(pyzCOO)5] · 2H2O (1a) and (N2H5)3[Nd(pyzCOO)4(H2O)] · 2NO3 (2a) have been determined from single crystal X-ray analysis. Coordination numbers from six to twelve have been established in lanthanide compounds but ten coordination appears rarely. This work reports the first ten coordinated hydrazinium lanthanide complexes with carboxylate anions. The structure contains lanthanum ions joined by 2-pyrazinecarboxylate groups forming two-dimensional sheets parallel to (0 0 1) plane. 2a is monomeric in nature and the structure comprises of N2H5+ cations, [Nd(pyzCOO)4(H2O)] and anions. The neodymium is nine coordinated with four pyzCOO lignads, bidentate (N,O) to the metal and the lone water molecule completes the coordination sphere and the sheets like pattern in all are interlinked via multiple hydrogen bonds leading to three dimensional structure.  相似文献   
88.
Conjugated linoleic acids (CLA) are known to exert several isomer-specific biological effects, but their mechanisms of action are unclear. In order to determine whether the physicochemical effects of CLA on membranes play a role in their isomer-specific effects, we synthesized phosphatidylcholines (PCs) with 16:0 at sn-1 position and one of four CLA isomers (trans 10 cis 12 (A), trans 9 trans 11 (B), cis 9 trans 11 (C), and cis 9 cis 11 (D)) at sn-2, and determined their biophysical properties in monolayers and bilayers. The surface areas of the PCs with the two natural CLA (A and C) were similar at all pressures, but they differed significantly in the presence of cholesterol, with PC-A condensing more than PC-C. Liposomes of PC-A similarly showed increased binding of cholesterol compared to PC-C liposomes. PC-A liposomes were less permeable to carboxyfluorescein compared to PC-C liposomes. The PC with two trans double bonds (B) showed the highest affinity to cholesterol and lowest permeability. The two natural CLA-PCs (A and C) stimulated lecithin-cholesterol acyltransferase activity by 2-fold, whereas the unnatural CLA-PCs (B and D) were inhibitory. These results suggest that the differences in the biophysical properties of CLA isomers A and C may partly contribute to the known differences in their biological effects.  相似文献   
89.
The percentage of saturated cholesteryl esters (CEs) synthesized by human LCAT is several times higher than expected from the sn-2 acyl composition of plasma phosphatidylcholine (PC), whereas the synthesis of 20:4 CE and 22:6 CE is much lower than expected. To explain these discrepancies, we proposed that LCAT transfers some saturated fatty acids from the sn-1 position of PC species that contain 20:4 or 22:6 at sn-2. The present studies provide in vivo evidence for this hypothesis. We determined the composition and synthesis of CE species in plasma of volunteers before and after a 6 week dietary supplementation with docosahexaenoic acid (22:6; DHA). In addition to an increase in the DHA content of all plasma lipids, there was a significant (+12%; P <0.005) increase of 16:0 CE, although there was no increase in 16:0 at sn-2 of PC. The increase of DHA in CE was much lower than its increase at sn-2 of PC. Ex vivo synthesis of CE species in plasma showed a significant (+24%; P <0.005) increase in the synthesis of 16:0 CE after DHA supplementation, which correlated positively with the increase of 22:6, but not of 16:0, at sn-2 of PC. These results show that the positional specificity of human LCAT is altered when the concentration of 16:0-22:6 PC is increased by DHA supplementation.  相似文献   
90.
Human plasma lecithin-cholesterol acyltransferase also converts lysolecithin to lecithin in the presence of low density lipoproteins. To understand the physiological importance of this lysolecithin acyltransferase reaction, we investigated the molecular species of lysolecithin available for acylation in normal plasma and the lecithins which are formed by the acylation of each of these lysolecithins. Palmitate- and stearate-containing lysolecithins were formed by the lecithin-cholesterol acyltransferase reaction, whereas oleate- and linoleate-containing lysolecithins were formed by the action of post-heparin lipase(s). All the natural lysolecithins were esterified at comparable rates by the isolated enzyme. Lyso platelet-activating factor was esterified about 70% as efficiently as the lysolecithins, while lysophosphatidylethanolamine was esterified at about 30% the rate observed with lysolecithin. The 2-acyl isomers of lysolecithin were acylated to the same extent as the 1-acyl isomers, although considerable isomerization of the former took place during the incubation. There were no net changes in the concentrations of lecithin and lysolecithin after 6 h of incubation with the enzyme, although over 10% of the labeled lysolecithin was converted to lecithin, indicating that the endogenous lecithin serves as the acyl donor in the reaction. When the molecular species of lecithin formed were analyzed by high performance liquid chromatography, the same pattern of fatty acid incorporation was observed with all the lysolecithins used. The bulk of the radioactivity was incorporated into molecular species formed by the acylation with linoleic, oleic, and palmitic acids, in decreasing order. However, in each case, the lecithins formed by acylation with palmitic acid had the highest specific radioactivity, followed by those acylated with linoleic and oleic acids. From these results it is postulated that the enzyme alters the molecular species composition of lecithin in plasma without increasing the net amount of total lecithins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号