首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   6篇
  2022年   2篇
  2021年   8篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   12篇
  2014年   15篇
  2013年   11篇
  2012年   21篇
  2011年   12篇
  2010年   9篇
  2009年   5篇
  2008年   12篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
51.
52.
Archaeal isopranoid glycerolipid vesicles (archaeosomes) serve as strong adjuvants for cell-mediated responses to entrapped Ag. We analyzed the processing pathway of OVA entrapped in archaeosomes composed of Methanobrevibacter smithii lipids, high in archaetidylserine (OVA-archaeosomes). In vitro, OVA-archaeosomes stimulated spleen cells from OVA-TCR-transgenic mice, D011.10 (CD4(+) cells expressing OVA(323-339) TCR) or OT1 (>90% CD8(+) OVA(257-264) cells), indicating both MHC class I and II presentations. In vivo, when naive (Thy1.2(+)) CFSE-labeled OT1 cells were transferred into OVA-archaeosome-immunized Thy 1.1(+) recipient mice, there was profound accumulation and cycling of donor-specific cells, and differentiation of H-2K(b)Ova(257-264) CD8(+) T cells into CD44(high)CD62L(low) effectors. Both macrophages and dendritic cells (DCs) efficiently cross-presented OVA-archaeosomes on MHC class I. Blocking phagocytosis by phosphatidylserine-specific receptor agonists strongly inhibited MHC class I presentation of OVA-archaeosomes, whereas blocking mannose receptors or FcRs lacked effect, indicating specific recognition of the archaetidylserine head group of M. smithii lipids by APCs. In addition, inhibitors of endosomal acidification blocked MHC class I processing of OVA-archaeosomes, whereas endosomal protease inhibitors lacked effect, suggesting acidification-dependent phagosome-to-cytosol diversion. Proteasomal inhibitors blocked OVA-archaeosome MHC class I presentation, confirming cytosolic processing. Both in vitro and in vivo, OVA-archaeosome MHC class I presentation required TAP. Ag-free archaeosomes also activated DC costimulation and cytokine production, without overt inflammation. Phosphatidylserine-specific receptor-mediated endocytosis is a mechanism of apoptotic cell clearance and DCs cross-present Ags sampled from apoptotic cells. Our results reveal the novel ability of archaeosomes to exploit this mechanism for cytosolic MHC class I Ag processing, and provide an effective particulate vaccination strategy.  相似文献   
53.
Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.  相似文献   
54.
A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1) transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR) and platelet derived growth factor receptor (PDGFR) family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs), demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK) kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.  相似文献   
55.
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disease with no specific treatment at present. The APPsw/Tg2576 mice exhibit age-related deterioration in memory and learning as well as amyloid-beta (Aβ) accumulation, and this mouse strain is considered an effective model for studying the mechanism of accelerated brain aging and senescence. The present study was aimed to investigate the beneficial effects of dietary supplements pomegranate, figs, or the dates on suppressing inflammatory cytokines in APPsw/Tg2576 mice. Changes in the plasma cytokines and Aβ, ATP, and inflammatory cytokines were investigated in the brain of transgenic mice. Significantly enhanced levels of inflammatory cytokines IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, TNF-α and Eotaxin activity were decreased by administration of the diet supplements containing pomegranates, figs, or dates. In addition, putative delays in the formation of senile plaques, as indicated by a decreasing tendency of brain Aβ1–40 and Aβ1–42 contents, were observed. Thus, novel results mediated by reducing inflammatory cytokines during aging may represent one mechanism by which these supplements exert their beneficial effects against neurodegenerative diseases such as AD.  相似文献   
56.
Epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression without any change in the DNA sequence, constitutes an important mechanism by which dietary components can selectively activate or inactivate gene expression. Curcumin (diferuloylmethane), a component of the golden spice Curcuma longa, commonly known as turmeric, has recently been determined to induce epigenetic changes. This review summarizes current knowledge about the effect of curcumin on the regulation of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. How these changes lead to modulation of gene expression is also discussed. We also discuss other nutraceuticals which exhibit similar properties. The development of curcumin for clinical use as a regulator of epigenetic changes, however, needs further investigation to determine novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents, for improving cancer treatment.  相似文献   
57.
Radiation accidents are rare events that induce radiation syndrome, a complex pathology which is difficult to treat. In medical management of radiation victims, life threatening damage to different physiological systems should be taken into consideration. The present study was proposed to identify metabolic and physiological perturbations in biofluids of mice during different phases of radiation sickness using 1H nuclear magnetic resonance (1H NMR) spectroscopy and pattern recognition (PR) technique. The 1H NMR spectra of the biofluids collected from mice irradiated with 5 Gray (Gy) at different time points during radiation sickness were analysed visually and by principal components analysis. Urine and serum spectral profile clearly showed altered metabolic profiles during different phases of radiation sickness. Increased concentration of urine metabolites viz. citrate, α ketoglutarate, succinate, hippurate, and trimethylamine during prodromal and clinical manifestation phase of radiation sickness shows altered gut microflora and energy metabolism. On the other hand, serum nuclear magnetic resonance (NMR) spectra reflected changes associated with lipid, energy and membrane metabolism during radiation sickness. The metabonomic time trajectory based on PR analysis of 1H NMR spectra of urine illustrates clear separation of irradiated mice group at different time points from pre dose. The difference in NMR spectral profiles depicts the pathophysiological changes and metabolic disturbances observed during different phases of radiation sickness, that in turn, demonstrate involvement of multiple organ dysfunction. This could further be useful in development of multiparametric approach for better evaluation of radiation damage as well as for medical management during radiation sickness.  相似文献   
58.
Protein tyrosine nitration is well-established post-translational modification occurring in a number of diseases, viz. neurodegenerative, cardiovascular diseases, ageing, etc. Tyrosine-67 (Tyr-67) nitration of cytochrome c (cyt c) was observed under oxidative stress affecting its structure and electron transfer properties. Hence, in this study, molecular dynamics (MD) simulations were carried out at room temperature to investigate the structural and conformational changes in the nitrated cyt c's. MD results revealed that the bond between FE (Heme-105) and S (Met-80) considerably weakened, radius of gyration, backbone and Cα root-mean-square deviations decreased and hydrogen bonding increased in the nitrated cyt c's relative to wild type (WT) cyt c. Ramachandran plot analysis revealed that N- and C-terminal helices also affected by nitration at CE2 carbon atom. Furthermore, essential dynamics analysis showed that amplitude of concerted motion decreased in the nitrated cyt c's, perhaps due to the increase in the hydrogen bonding interaction. Taken together, the structural and conformational changes in the active site Tyr-67 nitrated cyt c may have implications in the loss of electron/proton transfer and gain of apoptotic properties.  相似文献   
59.

Background

Th1 and Th17 responses are known to play an important role in immunity to pulmonary tuberculosis (PTB), although little is known about their role in extrapulmonary forms of tuberculosis (TB).

Methods

To identify the role of Th1, Th17, and Th22 cells in multi-focal TB lymphadenitis (TBL), we examined mycobacteria–specific immune responses in the whole blood of individuals with PTB (n = 20) and compared them with those with TBL (n = 25).

Results

Elevated frequencies of CD4+ T cells expressing IFN- γ, TNF-α, and IL-2 were present in individuals with TBL compared with those with PTB at baseline and in response to ESAT-6 and CFP-10. Similarly, increased frequencies of CD4+ T cells expressing IL-17A, IL-17F, and IFN-γ were also present in individuals with TBL at baseline and following ESAT-6 and CFP-10 stimulation although no significant difference in frequency of Th22 cells was observed. Finally, frequencies of Th1 (but not Th17) cells exhibited a significantly negative correlation with natural regulatory T cell frequencies at baseline.

Conclusions

Multi-focal TB lymphadenitis is therefore characterized by elevated frequencies of Th1 and Th17 cells, indicating that Th1 and Th17 responses in TB disease are probably correlates of disease severity rather than of protective immunity.  相似文献   
60.
Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号