首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   66篇
  2022年   9篇
  2021年   14篇
  2020年   10篇
  2019年   15篇
  2018年   17篇
  2017年   7篇
  2016年   17篇
  2015年   29篇
  2014年   28篇
  2013年   53篇
  2012年   66篇
  2011年   46篇
  2010年   28篇
  2009年   30篇
  2008年   45篇
  2007年   49篇
  2006年   29篇
  2005年   28篇
  2004年   34篇
  2003年   30篇
  2002年   33篇
  2001年   16篇
  2000年   16篇
  1999年   19篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   16篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   12篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   17篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   12篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
排序方式: 共有904条查询结果,搜索用时 46 毫秒
131.
132.
Streptomycin, an antibiotic used against microbial infections, inhibits the protein synthesis by binding to ribosomal protein S12, encoded by rpsL12 gene, and associated mutations cause streptomycin resistance. A streptomycin resistant, Lysinibacillus sphaericus DSLS5 (MIC >300 µg/mL for streptomycin), was isolated from a marine sponge (Tedania anhelans). The characterisation of rpsL12 gene showed a region having similarity to long terminal repeat sequences of murine lukemia virus which added 13 amino acids for loop formation in RpsL12; in addition, a K56R mutation which corresponds to K43R mutation present in streptomycin-resistant Escherichia coli is also present. The RpsL12 protein was modelled and compared with that of Lysinibacillus boronitolerans, Escherichia coli and Mycobacterium tuberculosis. The modelled proteins docked with streptomycin indicate compound had less affinity. The effect of loop on streptomycin resistance was analysed by constructing three different models of RpsL12 by, (i) removing both loop and mutation, (ii) removing the loop alone while retaining the mutation and (iii) without mutation having loop. The results showed that the presence of loop causes streptomycin resistance (decreases the affinity), and it further enhanced in the presence of mutation at 56th codon. Further study will help in understanding the evolution of streptomycin resistance in organisms.  相似文献   
133.
134.
135.
J Liu  H Wang  D McCollum  M K Balasubramanian 《Genetics》1999,153(3):1193-1203
Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin-based contractile ring. A division septum is formed centripetally, concomitant with ring constriction. Although several genes essential for cytokinesis have been described previously, enzymes that participate in the assembly of the division septum have not been identified. Here we describe a temperature-sensitive mutation, drc1-191, that prevents division septum assembly and causes mutant cells to arrest with a stable actomyosin ring. Unlike the previously characterized cytokinesis mutants, which undergo multiple mitotic cycles, drc1-191 is the first cytokinesis mutant that arrests with two interphase nuclei. Interestingly, unlike drc1-191, drc1-null mutants proceed through multiple mitotic cycles, leading to the formation of large cells with many nuclei. drc1 is allelic to cps1, which encodes a 1,3-beta-glucan synthase subunit. We conclude that Drc1p/Cps1p is not required for cell elongation and cell growth, but plays an essential role in assembly of the division septum. Furthermore, it appears that constriction of the actomyosin ring might depend on assembly of the division septum. We discuss possible mechanisms that account for the differences in the phenotypes of the drc1-191 and the drc1-null mutants and also reflect the potential links between Drc1p and other cytokinesis regulators.  相似文献   
136.
Two unique polypeptides, 22.4 and 16.4 kDa, were prominent in some human cataracts. Both proteins were identified as modified forms of the small heat shock protein, alphaB-crystallin. The concentration of total alphaB-crystallin in most of these cataracts was significantly increased. The 22.4-kDa protein was subsequently designated as alphaB(g). Mass spectrometric analyses of tryptic and Asp-N digests showed alphaB(g) is alphaB-crystallin minus the C-terminal lysine. alphaB(g) constituted 10-90% of the total alphaB-crystallin in these cataracts and was preferentially phosphorylated over the typical form of alphaB-crystallin. Human alphaB(g) and alphaB-crystallin were cloned and expressed in Escherichia coli. The differences in electrophoretic mobility and the large difference in native pI values suggest some structural differences exist. The chaperone-like activity of recombinant human alphaB(g) was comparable to that of recombinant human alphaB-crystallin in preventing the aggregation of lactalbumin induced by dithiothreitol. The mechanism involved in generating alphaB(g) is not known, but a premature termination of the alphaB-crystallin gene was ruled out by sequencing the polymerase chain reaction products of the last exon for the alphaB-crystallin gene from lenses containing alphaB(g). The 16.4-kDa protein was an N-terminally truncated fragment of alphaB(g). The high concentration of alphaB-crystallin in these cataracts is the first observation of this kind in human lenses.  相似文献   
137.
Activated carbon was prepared from coconut shells by chemical treatment, which was followed by thermal activation. It was mixed with 0.5 % of a sodium sulfide solution for different time intervals and the sulfide loading was observed maximum after one hour of equilibration. The carbons with and without sulfide treatment were used for uptake of mercuric ions from wastewater and the sulfide‐loaded carbon was found to be more effective. The equilibrium data for mercury adsorption obeyed a Freundlich‐type isotherm. Quantitative desorption of mercury was achieved using alkaline solutions of sodium sulfide.  相似文献   
138.
The present study was designed to investigate the dose-dependent direct effect of corticosterone on adult rat Leydig cell steroidogenesis in vitro. Leydig cells were isolated from the testis of normal adult male albino rats, purified on discontinuous Percoll gradient and plated in culture plates/flasks overnight at 34 degrees C in a CO(2) incubator under 95% air and 5% CO(2) using DME/F12 medium containing 1% fetal bovine serum. After the attachment of cells, serum-containing medium was removed and cells were exposed to different doses (0, 50, 100, 200, 400, and 800 nM) of corticosterone using serum-free fresh medium for 24 h at 34 degrees C. At the end of exposure period, cells were utilized for assessment of the activities and mRNA expression of steroidogenic enzymes (cytochrome P(450) side chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, and cytochrome P(450) aromatase) and steroidogenic acute regulatory protein gene expression. Testosterone and estradiol production were also quantified. Activities of cytochrome P(450) side chain cleavage enzyme, 3beta- and 17beta-hydroxysteroid dehydrogenases were declined significantly in a dose-dependent manner after corticosterone exposure, while their mRNA expression were significantly reduced at higher doses of corticosterone exposure. The activity and mRNA expression of cytochrome P(450) aromatase registered a significant increase at 100 nM dose of corticosterone whereas at 200-800 nM doses both the activity as well as the mRNA levels was significantly reduced below the basal level. StAR protein gene expression was significantly inhibited by higher doses of corticosterone employed. At all doses employed, corticosterone significantly reduced the production of testosterone by Leydig cells, while estradiol level registered a significant increase at 50 and 100 nM doses but at higher doses, it registered a significant decrease when compared to basal level. It is concluded from the present in vitro study that the molecular mechanism by which corticosterone reduces the production of Leydig cell testosterone is by reducing the activities and mRNA expression of steroidogenic enzymes and steroidogenic acute regulatory protein.  相似文献   
139.
Assessment of in vitro effects of metyrapone on Leydig cell steroidogenesis   总被引:1,自引:0,他引:1  
Metyrapone, a specific inhibitor of 11beta-hydroxylase inhibits glucocorticoid production and it is used in the diagnosis/treatment of hypercortisolism and also to test the functional integrity of hypothalamo-pituitary-adrenal axis. To assess the impact of glucocorticoid deficiency, this drug is preferred over adrenalectomy, which eliminates all the hormonal secretions of the adrenal cortex and medulla. However, whether metyrapone has any direct effect on the extra-adrenocortical cellular or tissue functions remains to be resolved. Our previous study showed a depressed testicular Leydig cell testosterone production in rats treated with metyrapone. Therefore, the present study was designed to examine the possible direct effect of metyrapone on testicular Leydig cell steroidogenesis in vitro. Leydig cell viability and the reactive oxygen species (ROS) concentration were not altered by any of the concentration of metyrapone tested. The efficacy of Leydig cell testosterone production under basal as well as LH-stimulated condition was not altered by metyrapone treatment. Further, Leydig cellular (14)C-glucose oxidation, the activity and mRNA levels of cytochrome side chain cleavage (P(450)scc), 3beta- and 17beta-hydroxysteroid dehydrogenase (3beta-HSD and 17beta-HSD) were not altered in metyrapone-treated cells. Therefore, it is concluded from the present study that metyrapone has no direct effect on Leydig cell testosterone production and, therefore, changes recorded in the in vivo studies are exclusively due to corticosterone deficiency.  相似文献   
140.
Glucose functions in plants both as a metabolic resource as well as a hormone that regulates expression of many genes. Arabidopsis hexokinase1 (HXK1) is the best understood plant glucose sensor/transducer, yet we are only now appreciating the cellular complexity of its signaling functions. We have recently shown that one of the earliest detectable responses to plant glucose treatments are extensive alterations of cellular F-actin. Interestingly, AtHXK1 is predominantly located on mitochondria, yet also can interact with actin. A normal functioning actin cytoskeleton is required for HXK1 to act as an effector in glucose signaling assays. We have suggested that HXK1 might alter F-actin dynamics and thereby influence the formation and/or stabilization of cytoskeleton-bound polysomes. In this Addendum, we have extended our initial observations on the subcellular targeting of HXK1 and its interaction with F-actin. We then further consider the cellular context in which HXK1 might regulate gene expression.Key words: Arabidopsis, F-actin, glucose signaling, hexokinase, hTalin, mitochondria, polysomes, protoplasts, transient expression assay, fluorescence microscopy  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号