首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   766篇
  免费   54篇
  国内免费   3篇
  2023年   3篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   14篇
  2018年   29篇
  2017年   18篇
  2016年   29篇
  2015年   55篇
  2014年   68篇
  2013年   67篇
  2012年   84篇
  2011年   65篇
  2010年   52篇
  2009年   41篇
  2008年   35篇
  2007年   43篇
  2006年   28篇
  2005年   28篇
  2004年   19篇
  2003年   18篇
  2002年   17篇
  2001年   14篇
  2000年   11篇
  1999年   14篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1972年   5篇
排序方式: 共有823条查询结果,搜索用时 23 毫秒
81.
Neb-LFamide or AYRKPPFNGSLFamide was originally purified from the grey flesh fly Neobellieria bullata as a myotropic neuropeptide. We studied the occurrence of this peptide and its isoforms in the central nervous system of different insect species by means of whole mount fluorescence immunohistochemistry, mass spectrometry, and data mining. We found that both sequence and immunoreactive distribution pattern are very conserved in the studied insects. In all species and stages we counted two pairs of immunoreactive cells in the pars intercerebralis. These cells projected axons throughout the ventral nerve cord. In the adult CNSs they formed a large number of immunoreactive varicosities as well. Mass spectrometry and data mining revealed that SIFamide exists in two isoforms: [G1]-SIFamide and [A1]-SIFamide. In addition, the SIFamide joining peptide is relatively well conserved throughout arthropod species. The conserved presence of two cysteine residues, separated by six amino acid residues, allows the formation of disulphide bridges.  相似文献   
82.
Eotaxin selectively binds CC chemokine receptor (CCR) 3, whereas monocyte chemotactic protein (MCP)-3 binds CCR1, CCR2, and CCR3. To identify the functional determinants of the chemokines, we generated four reciprocal chimeric chemokines-M10E9, M22E21, E8M11, and E20M23-by shuffling the N-terminus and N-loop of eotaxin and MCP-3. M22E21 and E8M11, which shared the N-loop from MCP-3, bound to monocytes with high affinity, and activated monocytes. In contrast, M10E9 and E20M23, which lacked the N-loop, failed to bind and transduce monocyte responses, identifying the N-loop of MCP-3 as the selectivity determinant for CCR1/CCR2. A BIAcore assay with an N-terminal peptide of CCR3 (residues 1-35) revealed that all chimeras except E20M23 exhibited varying degrees of binding affinity with commensurate chemotaxis activity of eosinophils. Surprisingly, E20M23 could neither bind the CCR3 peptide nor activate eosinophils, despite having both N-terminal motifs from eotaxin. These results suggest that the two N-terminal motifs of eotaxin must cooperate with other regions to successfully bind and activate CCR3.  相似文献   
83.
We characterize a novel pathogen recognition protein obtained from the lepidopteran Galleria mellonella. This protein recognizes Escherichia coli, Micrococcus luteus, and Candida albicans via specific binding to lipopolysaccharides, lipoteichoic acid, and β-1,3-glucan, respectively. As a multiligand receptor capable of coping with a broad variety of invading pathogens, it is constitutively produced in the fat body, midgut, and integument but not in the hemocytes and is secreted into the hemolymph. The protein was confirmed to be relevant to cellular immune response and to further function as an opsonin that promotes the uptake of invading microorganisms into hemocytes. Our data reveal that the mechanism by which a multiligand receptor recognizes microorganisms contributes substantially to their phagocytosis by hemocytes. A better understanding of an opsonin with the required repertoire for detecting diverse invaders might provide us with critical insights into the mechanisms underlying insect phagocytosis.  相似文献   
84.
The population structure of olive flounder Paralichthys olivaceus was estimated using nine polymorphic microsatellite (MS) loci in 459 individuals collected from eight populations, including five wild and three hatchery populations in Korea. Genetic variation in hatchery (mean number of alleles per locus, A = 10·2–12·1; allelic richness, AR = 9·3–10·1; observed heterozygosity, HO = 0·766–0·805) and wild (mean number of alleles per locus, A = 11·8–19·6; allelic richness, AR = 10·9–16·1; observed heterozygosity, HO = 0·820–0·888) samples did not differ significantly, suggesting a sufficient level of genetic variation in these well‐managed hatchery populations, which have not lost a substantial amount of genetic diversity. Neighbour‐joining tree and principal component analyses showed that genetic separation between eastern and pooled western and southern wild populations in Korea was probably influenced by restricted gene flow between regional populations due to the barrier effects of sea currents. The pooled western and southern populations are genetically close, perhaps because larval dispersal may depend on warm currents. One wild population (sample from Wando) was genetically divergent from the main distribution, but it was genetically close to hatchery populations, indicating that the genetic composition of the studied populations may be affected by hydrographic conditions and the release of fish stocks. The estimated genetic population structure and potential applications of MS markers may aid in the proper management of P. olivaceus populations.  相似文献   
85.
Shewanella oneidensis MR-1 has the ability to inhale certain metals and chemical compounds and exhale these materials in an altered state; as a result, this microorganism has been widely applied in bioremediation protocols. However, the relevant characteristics of cell growth and biosynthesis of PuFAs have yet to be thoroughly investigated. Therefore, in this study, we have attempted to characterize the growth and fatty acid profiles ofS. oneidensis MR-1 under a variety of temperature conditions. The fastest growth ofS. oneidensis MR-1 was observed at 30°C, with a specific growth rate and doubling time of 0.6885 h−1 and 1.007 h. The maximum cell mass of this microorganism was elicited at a temperature of 4°C. The eicosapentaenoic acid (EPA) synthesis ofS. oneidensis MR-1 was evaluated under these different culture temperatures.S. oneidensis MR-1 was found not to synthesize EPA at temperatures in excess of 30°C, but was shown to synthesize EPA at temperatures below 30°C. The EPA content was found to increase with decreases in temperature. We then evaluated the EPA biosynthetic pathway, using a phylogenetic tree predicted on 16s rRNA sequences, and the homology of ORFs betweenS. oneidensis MR-1 andShewanella putrefaciens SCRC-2738, which is known to harbor a polyketide synthase (PKS)-like module. The phylogenetic tree revealed that MR-1 was very closely related to bothMoritella sp., which is known to synthesize DHA via a PKS-like pathway, andS. putrefaciens, which has been reported to synthesize EPA via an identical pathway. The homology between the PKS-like module ofS. putrefaciens SCRC-2738 and the entire genome ofS. oneidensis MR-1 was also analyzed, in order to mine the genes associated with the PKS-like pathway inS. oneidensis MR-1. A putative PKS-like module for EPA biosynthesis was verified by this analysis, and was also corroborated by the experimental finding thatS. oneidensis MR-1 was able to synthesize EPA without the expression of dihomo-γ-linoleic acid (DGLA) and arachidonic acid (AA) formed during EPA synthesis via the FAS pathway.  相似文献   
86.
The most energy-requiring organ in the body, the cardiac muscle, relies primarily on lipoprotein-derived fatty acids. Prenatal loss of cardiac lipoprotein lipase (LPL) leads to hypertriglyceridemia, but no cardiac dysfunction, in young mice. Cardiac specific loss of LPL in 8-wk-old mice was produced by a 2-wk tamoxifen treatment of MerCreMer (MCM)/Lpl(flox/flox) mice. LPL gene deletion was confirmed by PCR analysis, and LPL mRNA expression was reduced by approximately 70%. One week after tamoxifen was completed, triglyceride was increased with LPL deletion, 162 +/- 53 vs. 91 +/- 21 mg/dl, P < 0.01. Tamoxifen treatment of Lpl(flox/flox) mice did not cause a significant increase in triglyceride levels. Four weeks after tamoxifen, MCM/Lpl(flox/flox) mice had triglyceride levels of 190 +/- 27 mg/dl, similar to those of mice with prenatal LPL deletion. One week after the tamoxifen, MCM/Lpl(flox/flox), but not Lpl(flox/flox), mice had decreases in carnitine palmitoyl transferase I mRNA (18%) and pyruvate dehydrogenase kinase 4 mRNA (38%). These changes in gene expression became more robust with time. Acute loss of LPL decreased ejection fraction and increased mRNA levels for atrial natriuretic factor. Our studies show that acute loss of LPL can be produced and leads to rapid alteration in gene expression and cardiac dysfunction.  相似文献   
87.
88.
The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of microbial genome sequences coupled to proteomic and bioinformatic analysis. Critical to this approach is in vivo testing in the context of a natural host–pathogen relationship, one that includes genetic diversity in the host as well as among pathogen strains. We aggregate the results of three independent genome-wide screens using in vivo immunization and protection against Anaplasma marginale as a model for discovery of vaccine antigens for rickettsial pathogens. In silico analysis identified 62 outer membrane proteins (Omp) from the 949 predicted proteins in the A. marginale genome. These 62 Omps were reduced to 10 vaccine candidates by two independent genome-wide screens using IgG2 from vaccinates protected from challenge following vaccination with outer membranes (screen 1) or bacterial surface complexes (screen 2). Omps with broadly conserved epitopes were identified by immunization with a live heterologous vaccine, A. marginale ssp. centrale (screen 3), reducing the candidates to three. The genome-wide screens identified Omps that have orthologs broadly conserved among rickettsial pathogens, highlighted the importance of identifying immunologically subdominant antigens, and supported the use of reverse vaccinology approaches in vaccine development for rickettsial diseases.  相似文献   
89.
Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.  相似文献   
90.
Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. ‘White Star’) and characterized its activity in transgenic Arabidopsis, carrot, and potato using the β-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 μM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5′ deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号