首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21898篇
  免费   1757篇
  国内免费   1444篇
  25099篇
  2024年   54篇
  2023年   258篇
  2022年   544篇
  2021年   911篇
  2020年   668篇
  2019年   823篇
  2018年   926篇
  2017年   685篇
  2016年   951篇
  2015年   1372篇
  2014年   1546篇
  2013年   1764篇
  2012年   2065篇
  2011年   1802篇
  2010年   1119篇
  2009年   917篇
  2008年   1134篇
  2007年   967篇
  2006年   838篇
  2005年   751篇
  2004年   706篇
  2003年   646篇
  2002年   526篇
  2001年   380篇
  2000年   332篇
  1999年   341篇
  1998年   181篇
  1997年   165篇
  1996年   147篇
  1995年   144篇
  1994年   132篇
  1993年   112篇
  1992年   147篇
  1991年   138篇
  1990年   100篇
  1989年   85篇
  1988年   83篇
  1987年   67篇
  1986年   63篇
  1985年   62篇
  1984年   47篇
  1983年   36篇
  1982年   26篇
  1981年   26篇
  1979年   23篇
  1978年   24篇
  1975年   18篇
  1974年   19篇
  1973年   23篇
  1972年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
Barley seeds were treated for 3 h at 25°C with 240 mM ethyl methanesulphonate (EMS), washed for 18 h, treated with various concentrations of unbuffered sodium azide (pH 6.7–7.3) for 3 h at 25°C, re-dried to 30% water content and either sown immediately or stored at 25°C for 12 days and then sown. The synergistic action of sodium azide post-treatment has been demonstrated only for the EMS-induced M1 germination reduction, while the EMS-induced M1 sterility and the yield of M2 chlorophyll mutants were unaffected. The ?storage” recovery from EMS-induced mutagenic effects was insensitive to sodium azide post-treatment. The 12 day-seed storage at 25°C brought about an improvement of M1 germination, M1 survival, M1 fertility and a decrease in the amount of M2 mutants, regardless of whether sodium azide post-treatment was applied or not.  相似文献   
23.
24.
25.
26.
Identifying the mechanisms that underlie the assembly of plant communities is critical to the conservation of terrestrial biodiversity. However, it is seldom measured or quantified how much deterministic versus stochastic processes contribute to community assembly in alpine meadows. Here, we measured the decay in community similarity with spatial and environmental distance in the Zoige Plateau. Furthermore, we used redundancy analysis (RDA) to divide the variations in the relative abundance of plant families into four components to assess the effects of environmental and spatial. Species assemblage similarity liner declined with geographical distance (p < .001, R 2 = .6388), and it decreased significantly with increasing distance of total phosphorus (TP), alkali‐hydrolyzable nitrogen (AN), available potassium (AK), nitrate nitrogen (NO3 +–N), and ammonia nitrogen (NH4 +–N). Environmental and spatial variables jointly explained a large proportion (55.2%) of the variation in the relative abundance of plant families. Environmental variables accounted for 13.1% of the total variation, whereas spatial variables accounted for 11.4%, perhaps due to the pronounced abiotic gradients in the alpine areas. Our study highlights the mechanism of plant community assembly in the alpine ecosystem, where environmental filtering plays a more important role than dispersal limitation. In addition, a reasonably controlled abundance of Compositae (the family with the highest niche breadth and large niche overlap value with Gramineae and Cyperaceae) was expected to maintain sustainable development in pastoral production. These results suggest that management measures should be developed with the goal of improving or maintaining suitable local environmental conditions.  相似文献   
27.
Background:The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system.Methods:We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals’ long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage.Results:Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 μg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01–1.12), 1.09 (95% CI 0.98–1.21) and 1.00 (95% CI 0.90–1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06–1.23), 1.30 (95% CI 1.12–1.50) and 1.18 (95% CI 1.02–1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively.Interpretation:Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.

By November 2021, COVID-19 had caused more than 5 million deaths globally1 and more than 29 400 in Canada.2 The clinical manifestations of SARS-CoV-2 infection range from being asymptomatic to multiple organ failure and death. Identifying risk factors for COVID-19 severity is important to better understand etiological mechanisms and identify populations to prioritize for screening, vaccination and medical treatment. Risk factors for severity of COVID-19 include male sex, older age, pre-existing medical conditions and being from racialized communities.35 More recently, ambient air pollution has been implicated as a potential driver of COVID-19 severity.610Long-term exposure to ambient air pollution, a major contributor to global disease burden,11 could increase the risk of severe COVID-19 outcomes by several mechanisms. Air pollutants can reduce individuals’ pulmonary immune responses and antimicrobial activities, boosting viral loads.8 Air pollution can also induce chronic inflammation and overexpression of the alveolar angiotensin-converting enzyme 2 (ACE) receptor,7 the key receptor that facilitates SARS-CoV-2 entry into cells.12,13 Exposure to air pollution contributes to chronic conditions, such as cardiovascular disease, that are associated with unfavourable COVID-19 prognosis, possibly owing to persistent immune activation and excessive amplification of cytokine development.10 Thus, greater exposure to long-term air pollution may lead to severe COVID-19 outcomes.Reports exist of positive associations between long-term exposure to particulate matter with diameters equal to or smaller than 2.5 or 10 μm (PM2.5 and PM10), ground-level ozone (O3) and nitrogen dioxide (NO2), and metrics of COVID-19 severity (e.g., mortality and case fatality rate).810 However, most studies to date have used ecological and cross-sectional designs, owing to limited access to individual data, which leads to ambiguity in interpreting the results, thus hindering their influence on policy. 6,14 Ecological designs do not allow for disentangling the relative impacts of air pollution on individual susceptibility to infection and disease severity.14 Residual confounding by factors such as population mobility and social interactions is also problematic. Therefore, a cohort study with data on individuals with SARS-CoV-2 is a more appropriate design.6,14 Studies that have used individual data were conducted in specific subpopulations15,16 or populations with few severe cases,17 or had limited data on individual exposure to air pollutants.18 In Canada, 1 ecological study found a positive association between long-term exposure to PM2.5 and COVID-19 incidence,19 but no published study has explored the association between air pollution and COVID-19 severity.We aimed to examine the associations between long-term exposure to 3 common air pollutants (PM2.5, NO2 and O3) and key indicators of COVID-19 severity, including hospital admission, intensive care unit (ICU) admission and death, using a large prospective cohort of people with confirmed SARS-CoV-2 infection in Ontario, Canada, in 2020. The air contaminants PM2.5, NO2 and O3 are regularly monitored by the Canadian government, and are key pollutants that are considered when setting air-quality policies. They originate from varying sources (NO2 is primarily emitted during combustion of fuel, O3 is primarily formed in air by chemical reactions of nitrogen oxides and volatile organic compounds, and PM2.5 can be emitted during combustion or formed by reactions of chemicals like sulphur dioxide and nitrogen oxides in air) and they may affect human health differently.20,21,22  相似文献   
28.
It was well known that beta-amyloid (Abeta) and tau protein play an important role in pathological procedure of Alzheimer's disease (AD), a senile dementia. The growth inhibitory factor (GIF, also named metallothionein-3, MT-3) had been demonstrated to inhibit the outgrowth of cortex neurons in the medium with extract of the AD patient brain. In our experiments, it was found that the neurons of cortex and the PC12 (pheochromocytoma) cells could be protected from the cytotoxicity of beta-amyloid 25-35 in presence of GIF and its domains. Additionally, GIF can scavenge the hydroxyl radical efficiently in CytC-VitC radical producing system and its alpha-domain shown more effective potentials than its beta-domain. The electron paramagnetic resonance spectra also show that the alpha-domain has more potential ability for eliminating reactive oxygen free radicals than its beta-domain. The results suggest that GIF could act as an efficient scavenger against free radicals in vitro and the alpha-domain in GIF molecule shows more potential in protecting against reactive oxygen species injury than the beta-domain.  相似文献   
29.
Sporopollenin layers in the cell wall of coccal green algae are responsible for the resistance of cell walls to destructive processes during fossilization as well as during chemical preparation of samples for pollen-analysis. Pollen slides of samples from limnic sediments thus also contain some algal cell walls. Although some pollen-analysts tried to stress this fact, the finds of algae in pollen slides have not been paid systematic attention yet, despite their potential use for a more accurate palaeoecological reconstruction. The article summarizes the results of palaeoecological studies showing how the algae can be used in palaeoecological reconstruction of past environments. The possibility of utilizing the indicative value of algal finds is demonstrated on examples of algal communities from fossil, subrecent and recent sediments from different longitudes, latitudes, and altitudes. The identification and indicative values of species and varieties ofPediastrum are included in a special review (Komárek &; Jankovská, Biblioth. Phycol., in press). The contemporary knowledge of ecological requirements of the given taxa, completed by information from their fossil finds, makes possible the reconstruction of trophic and temperature conditions and of the purity of the water environment of the past water biotopes.  相似文献   
30.
Entomopathogenic fungi have great potential to control agricultural and horticultural insect pests, however optimizing conidial production systems to demonstrate high productivity and stability still needs additional efforts for successful field application and industrialization. Although many virulent entomopathogenic fungal isolates have been viewed as potential candidates in a laboratory environment, very few of the isolates are being used in practice for application in agricultural fields as commercial products. I. javanicus is an entomopathogenic fungus that is parasitic to various diverse coleopteran and lepidopteran insects and thought good candidate as biopesticdes. In this work, the basic characteristics of two entomopathogenic fungi, I. javanica FG340 and Pf04, were investigated in morphological examinations, genetic identification, and virulence against Thrips palmi, and then the feasibility of various grains substrates for conidial production was assessed, particularly focusing on conidial productivity and thermotolerance. Isaria javanica FG340 and Pf04 conidia were solid-cultured on 12 grains for 14?days in a Petri dish. Of the tested Italian millet, perilla seed, millet and barley-based cultures showed high conidial production. The four-grain media yielded >1?×?109 conidia/g of I. javanica FG340 and Pf04. Pf04 strain had enhanced thermotolerance up to 45?°C when cultured on Italian millet. In application, it was easy to make a conidial suspension using the cultured grains, and several surfactants were tested to release the conidia. This work suggests several possible inexpensive grain substrates by which to promote conidial production combined with enhanced stability against exposure to high temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号