全文获取类型
收费全文 | 134265篇 |
免费 | 22291篇 |
国内免费 | 8051篇 |
专业分类
164607篇 |
出版年
2024年 | 250篇 |
2023年 | 1467篇 |
2022年 | 3410篇 |
2021年 | 5870篇 |
2020年 | 5593篇 |
2019年 | 7906篇 |
2018年 | 7964篇 |
2017年 | 7093篇 |
2016年 | 8473篇 |
2015年 | 10558篇 |
2014年 | 11565篇 |
2013年 | 12439篇 |
2012年 | 11894篇 |
2011年 | 10658篇 |
2010年 | 8278篇 |
2009年 | 6747篇 |
2008年 | 6462篇 |
2007年 | 5349篇 |
2006年 | 4638篇 |
2005年 | 3831篇 |
2004年 | 3245篇 |
2003年 | 2925篇 |
2002年 | 2413篇 |
2001年 | 2085篇 |
2000年 | 1847篇 |
1999年 | 1829篇 |
1998年 | 1018篇 |
1997年 | 1075篇 |
1996年 | 972篇 |
1995年 | 920篇 |
1994年 | 834篇 |
1993年 | 680篇 |
1992年 | 842篇 |
1991年 | 679篇 |
1990年 | 552篇 |
1989年 | 418篇 |
1988年 | 350篇 |
1987年 | 293篇 |
1986年 | 245篇 |
1985年 | 277篇 |
1984年 | 161篇 |
1983年 | 148篇 |
1982年 | 77篇 |
1981年 | 47篇 |
1980年 | 35篇 |
1979年 | 36篇 |
1978年 | 25篇 |
1976年 | 15篇 |
1975年 | 18篇 |
1972年 | 19篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Meng Wu Shunyou Long Anthony G. Frutos Maryna Eichelberger Ye Fang 《Journal of receptor and signal transduction research》2013,33(3-4):202-210
The Epic® system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided. 相似文献
912.
AbstractIntroduction: The aim of the study was to explore the association between the vitamin D pathway gene variations and the bone biomarkers response to calcium and low dose calcitriol supplementation in postmenopausal Chinese women.Methods: A total of 110 healthy postmenopausal Chinese women (61.51?±?6.93?years) were enrolled. The participants were supplemented with calcium (600?mg/d) and calcitriol (0.25?μg/d), for 1?year. Four biomarkers, serum levels of beta C-terminal cross-linked telopeptides of type I collagen (β-CTX), amino-terminal propeptide of type I collagen (P1NP), parathyroid hormone (PTH) and 25-hydroxyvitamin D [25(OH)D] were measured at baseline and 12-month follow-up. Multivariate regression models were established to explore the statistical association between the change rate of the four biomarkers and 15?key genes within the vitamin D metabolic pathway.Results: This exclusion process left 98 participants for analysis. Serum levels of P1NP, β-CTX and PTH were significantly decreased at the 12-month follow-up (all p?<?0.05). Serum 25(OH)D level had no significant change (p?>?0.05). No association was found between the vitamin D pathway gene polymorphisms and bone biomarkers response to calcium and low dose calcitriol supplementation.Conclusions: Genetic background of postmenopausal Chinese women might not influence supplemental response of the biomarkers to calcium and low dose calcitriol. 相似文献
913.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. FLZ is a novel synthetic derivative of natural squamosamide and has been proved to improve memory deficits in dementia animal models. In this study, we aimed to investigate the mechanisms of FLZ’s neuroprotective effect in APP/PS1 double transgenic mice and SH-SY5Y (APPwt/swe) cells. The results showed that treatment with FLZ significantly improved the memory deficits of APP/PS1 transgenic mice and decreased apoptosis of SH-SY5Y (APPwt/swe) cells. FLZ markedly attenuated Aβ accumulation and tau phosphorylation both in vivo and in vitro. Mechanistic study showed that FLZ interfered APP processing, i.e., FLZ decreased β-amyloid precursor protein (APP) phosphorylation, APP-carboxy-terminal fragment (APP-CTF) production and β-amyloid precursor protein cleaving enzyme 1 (BACE1) expression. These results indicated that FLZ reduced Aβ production through inhibiting amyloidogenic pathway. The mechanistic study about FLZ’s inhibitory effect on tau phosphorylation revealed t the involvement of Akt/glycogen synthase kinase 3β (GSK3β) pathway. FLZ treatment increased Akt activity and inhibited GSK3β activity both in vivo and in vitro. The inhibitory effect of FLZ on GSK3β activity and tau phosphorylation was suppressed by inhibiting Akt activity, indicating that Akt/GSK3β pathway might be the possible mechanism involved in the inhibitory effect of FLZ on tau hyperphosphorylation. These results suggested FLZ might be a potential anti-AD drug as it not only reduced Aβ production via inhibition amyloidogenic APP processing pathway, but also attenuated tau hyperphosphoylation mediated by Akt/GSK3β. 相似文献
914.
High throughput sequencing of 16S rRNA gene leads us into a deeper understanding on bacterial diversity for complex environmental samples, but introduces blurring due to the relatively low taxonomic capability of short read. For wastewater treatment plant, only those functional bacterial genera categorized as nutrient remediators, bulk/foaming species, and potential pathogens are significant to biological wastewater treatment and environmental impacts. Precise taxonomic assignment of these bacteria at least at genus level is important for microbial ecological research and routine wastewater treatment monitoring. Therefore, the focus of this study was to evaluate the taxonomic precisions of different ribosomal RNA (rRNA) gene hypervariable regions generated from a mix activated sludge sample. In addition, three commonly used classification methods including RDP Classifier, BLAST-based best-hit annotation, and the lowest common ancestor annotation by MEGAN were evaluated by comparing their consistency. Under an unsupervised way, analysis of consistency among different classification methods suggests there are no hypervariable regions with good taxonomic coverage for all genera. Taxonomic assignment based on certain regions of the 16S rRNA genes, e.g. the V1&V2 regions – provide fairly consistent taxonomic assignment for a relatively wide range of genera. Hence, it is recommended to use these regions for studying functional groups in activated sludge. Moreover, the inconsistency among methods also demonstrated that a specific method might not be suitable for identification of some bacterial genera using certain 16S rRNA gene regions. As a general rule, drawing conclusions based only on one sequencing region and one classification method should be avoided due to the potential false negative results. 相似文献
915.
A laboratory scale experiment was described in this paper to enhance biological nitrogen removal by simultaneous nitrification
and denitrification (SND) via nitrite with a sequencing batch biofilm reactor (SBBR). Under conditions of total nitrogen (TN)
about 30 mg/L and pH ranged 7.15–7.62, synthetic wastewater was cyclically operated within the reactor for 110 days. Optimal
operation conditions were established to obtain consistently high TN removal rate and nitrite accumulation ratio, which included
an optimal temperature of 31 °C and an aeration time of 5 h under the air flow of 50 L/h. Stable nitrite accumulation could
be realized under different temperatures and the nitrite accumulation ratio increased with an increase of temperature from
15 to 35 °C. The highest TN removal rate (91.9%) was at 31 °C with DO ranged 3–4 mg/L. Process control could be achieved by
observing changes in DO and pH to judge the end-point of oxidation of ammonia and SND. 相似文献
916.
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system. 相似文献
917.
Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae 总被引:3,自引:0,他引:3 下载免费PDF全文
Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) revealed that strains with the most introns were the most sensitive to growth inhibition by pentamidine on glycerol medium. Analysis of blots of RNA from yeast strains grown in raffinose medium in the presence or absence of pentamidine revealed that the splicing of seven group I and two group II introns that have intron reading frames was inhibited by the drug to varying extents. Three introns without reading frames were unaffected by the drug in vivo, and two of these were inhibited in vitro, implying that the drug affects splicing by acting directly on RNA in vitro, but on another target in vivo. Because the most sensitive introns in vivo are the ones whose splicing depends on a maturase encoded by the intron reading frames, we tested pentamidine for effects on mitochondrial translation. We found that the drug inhibits mitochondrial but not cytoplasmic translation in cells at concentrations that inhibit mitochondrial intron splicing. Therefore, pentamidine is a potent and specific inhibitor of mitochondrial translation, and this effect explains most or all of its effects on respiratory growth and on in vivo splicing of mitochondrial introns. 相似文献
918.
Dingqian Wu Xiaoxiao Fu Yuanyuan Zhang Qiang Li Ligang Ye Shu Han Mao Zhang 《Experimental biology and medicine (Maywood, N.J.)》2020,245(18):1683
C16 peptide and angiopoietin-1 (Ang-1) have been found to have anti-inflammatory activity in various inflammation-related diseases. However, their combined role in acute respiratory distress syndrome (ARDS) has not been investigated yet. The objective of this study was to investigate the effects of C16 peptide and Ang-1 in combination with lipopolysaccharide (LPS)-induced inflammatory insult in vitro and in vivo. Human pulmonary microvascular endothelial cells and human pulmonary alveolar epithelial cells were used as cell culture systems, and an ARDS rodent model was used for in vivo studies. Our results demonstrated that C16 and Ang-1 in combination significantly suppressed inflammatory cell transmigration by 33% in comparison with the vehicle alone, and decreased the lung tissue wet-to-dry lung weight ratio to a maximum of 1.53, compared to 3.55 in the vehicle group in ARDS rats. Moreover, C + A treatment reduced the histology injury score to 60% of the vehicle control, enhanced arterial oxygen saturation (SO2), decreased arterial carbon dioxide partial pressure (PCO2), and increased oxygen partial pressure (PO2) in ARDS rats, while also improving the survival rate from 47% (7/15) to 80% (12/15) and diminishing fibrosis, necrosis, and apoptosis in lung tissue. Furthermore, when C + A therapy was administered 4 h following LPS injection, the treatment showed significant alleviating effects on pulmonary inflammatory cell infiltration 24 h postinsult. In conclusion, our in vitro and in vivo studies show that C16 and Ang-1 exert protective effects against LPS-induced inflammatory insult. C16 and Ang-1 hold promise as a novel agent against LPS-induced ARDS. Further studies are needed to determine the potential for C16 and Ang-1 in combination in treating inflammatory lung diseases. 相似文献
919.
Liwen Liang Huili Li Ting Cao Lina Qu Lulu Zhang Guo-Chang Fan Peter A. Greer Jianmin Li Douglas L. Jones Tianqing Peng 《The Journal of biological chemistry》2020,295(49):16840
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities. 相似文献
920.