首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14062篇
  免费   1702篇
  国内免费   4篇
  2021年   181篇
  2020年   127篇
  2019年   149篇
  2018年   181篇
  2017年   187篇
  2016年   258篇
  2015年   437篇
  2014年   464篇
  2013年   607篇
  2012年   787篇
  2011年   816篇
  2010年   533篇
  2009年   464篇
  2008年   731篇
  2007年   663篇
  2006年   637篇
  2005年   575篇
  2004年   551篇
  2003年   555篇
  2002年   535篇
  2001年   309篇
  2000年   280篇
  1999年   274篇
  1998年   233篇
  1997年   162篇
  1996年   165篇
  1995年   159篇
  1994年   138篇
  1993年   138篇
  1992年   196篇
  1991年   224篇
  1990年   237篇
  1989年   185篇
  1988年   196篇
  1987年   199篇
  1986年   178篇
  1985年   183篇
  1984年   158篇
  1983年   145篇
  1982年   134篇
  1981年   142篇
  1980年   141篇
  1979年   134篇
  1978年   138篇
  1977年   114篇
  1976年   101篇
  1974年   136篇
  1973年   130篇
  1972年   112篇
  1971年   106篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
81.
Activation of neutrophils by recombinant interleukin 6   总被引:17,自引:0,他引:17  
The cytokine interleukin 6 (IL-6) has been shown to have multiple biological activities against many cellular targets. The present studies were designed to determine whether these activities extended to the neutrophil (PMN). Initially, we investigated the ability of IL-6 to modulate PMN-mediated antibody-dependent cellular cytotoxicity. The presence of IL-6 stimulated 51Cr release from labeled, opsonized targets by 67.1% (from 21.6 +/- 1.4% to 36.1 +/- 1.3% at 10 U of IL-6 (P less than 0.01)). IL-6 was not directly toxic to the target cells and stimulation of ADCC was shown to occur across a range of effector-to-target ratios. To investigate the basis of the capacity of IL-6 to stimulate PMN, we studied the effects of IL-6 on PMN chemotaxis, degranulation, and the respiratory burst. IL-6 was not chemotactic or chemokinetic for PMN. However, IL-6 stimulated lysozyme secretion from 14.1 +/- 2.5 to 23.7 +/- 3.6% at 100 U (P less than 0.01). IL-6 was a complete secretagogue, being able to induce the secretion of both the secretory granule marker lactoferrin (11.2 +/- 2.0 to 23.5 +/- 2.2%) and the primary granule marker beta-glucuronidase (5.0 +/- 1.0 to 18.2 +/- 4.0%). IL-6 was not able to directly stimulate the PMN respiratory burst. However, IL-6 did "prime" PMN, enhancing superoxide secretion by fMLP (10(-7) M)-treated PMN by 50.8% (5.9 +/- 1.0 to 8.9 +/- 1.5 nmol superoxide at 100 U of IL-6; P less than 0.01) and PMA (5.0 nM) by 54.3% (8.1 +/- 2.6 to 12.5 +/- 3.6 nmol; P less than 0.05). In conclusion, IL-6 is a PMN stimulant, enhancing the toxicity of PMN in an antibody-dependent cellular cytotoxicity assay. Enhanced cytotoxicity may have been mediated, at least in part, by the stimulation of secretion of toxic components from PMN targets and by the priming of stimulating respiratory burst activity.  相似文献   
82.
The guanine-nucleotide-binding domain (G domain) of elongation factor Tu(EF-Tu) consisting of 203 amino acid residues, corresponding to the N-terminal half of the molecule, has been recently engineered by deleting part of the tufA gene and partially characterized [Parmeggiani, A., Swart, G. W. M., Mortensen, K. K., Jensen, M., Clark, B. F. C., Dente, L. and Cortese, R. (1987) Proc. Natl Acad. Sci. USA 84, 3141-3145]. In an extension of this project we describe here the purification steps leading to the isolation of highly purified G domain in preparative amounts and a number of functional properties. The G domain is a relatively stable protein, though less stable than EF-Tu towards thermal denaturation (t50% = 41.3 degrees C vs. 46 degrees C, respectively). Unlike EF-Tu, its affinity for GDP and GTP, as well as the association and dissociation rates of the relative complexes are similar, as determined under a number of different experimental conditions. Like EF-Tu, the GTPase of the G domain is strongly enhanced by increasing concentrations of Li+, K+, Na+ or NH+4, up to the molar range. The effects of the specific cations shows similarities and diversities when compared to the effects on EF-Tu. K+ and Na+ are the most active followed by NH+4 and Li+ whilst Cs+ is inactive. In the presence of divalent cations, optimum stimulation occurs in the range 3-5 mM, Mg2+ being more effective than Mn2+ and Ca2+. Monovalent and divalent cations are both necessary components for expressing the intrinsic GTPase activity of the G domain. The pH curve of the G domain GTPase displays an optimum at pH 7-8, similar to that of EF-Tu. The 70-S ribosome is the only EF-Tu ligand affecting the G domain in the same manner as that observed with the intact molecule, although the extent of the stimulatory effect is lower. The rate of dissociation of the G domain complexes with GTP and GDP as well as the GTPase activity are also influenced by EF-Ts and kirromycin, but the effects evoked are small and in most cases different from those exerted on EF-Tu. The inability of the G domain to sustain poly(Phe) synthesis is in agreement with the apparent lack of formation of a ternary complex between the G domain.GTP complex and aa-tRNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
83.
Molecular Analysis of Recombination Events in Drosophila   总被引:13,自引:10,他引:3  
D. Curtis  S. H. Clark  A. Chovnick    W. Bender 《Genetics》1989,122(3):653-661
The locations of crossover junctions and gene conversion tracts, isolated in the rosy gene of Drosophila melanogaster, were determined using DNA sequencing and denaturing gradient gel electrophoresis. Frequent DNA sequence polymorphisms between the parental genes served as unselected genetic markers. All conversion tracts were continuous, and half of the reciprocal crossover events had conversion tracts at the crossover junction. These experiments have also identified the sequence polymorphisms responsible for altered gene expression in two naturally occurring rosy variants.  相似文献   
84.
Mutants of Clostridium acetobutylicum ATCC 824 exhibiting resistance to 2-bromobutyrate or rifampin were isolated after nitrosoguanidine treatment. Mutants were screened for solvent production by using an automated alcohol test system. Isolates were analyzed for levels of butanol, ethanol, acetone, butyrate, acetate, and acetoin in stationary-phase batch cultures. The specific activities of NADH- and NADPH-dependent butanol dehydrogenase and butyraldehyde dehydrogenase as well as those of acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase (butyrate-acetoacetate coenzyme A-transferase [EC 2.8.3.9]) (CoA-transferase), butyrate kinase, and phosphotransbutyrylase were measured at the onset of stationary phase. Rifampin-resistant strain D10 and 2-bromobutyrate mutant R were found to be deficient in only CoA-transferase, while several other mutants exhibited reduced butyraldehyde dehydrogenase and butanol dehydrogenase activities as well. The colony morphology of 2-bromobutyrate mutant R was similar to that of the parent on RCM medium; however, it had about 1/10 the level of CoA-transferase and increased levels of butanol dehydrogenase and butyraldehyde dehydrogenase. A nonsporulating, spontaneously derived degenerated strain exhibited reduced levels of butyraldehyde dehydrogenase, butanol, dehydrogenase, and CoA-transferase compared with those of the original strain. When C. acetobutylicum ATCC 824 was grown on medium containing low levels of 2-bromobutyrate, an altered colony morphology was observed. Not all strains resistant to 2-bromobutyrate (12 mM) were non-solvent-producing strains.  相似文献   
85.
86.
87.
The synthesis of 2-N-[4-(1'-azitrifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-++ +yloxy)-2- propylamine (ATB-BMPA) is described. This compound was used as an exofacial probe for the human erythrocyte glucose-transport system. A new method is described for directly estimating the affinity for exofacial ligands which bind to the erythrocyte glucose transporter. By using this equilibrium-binding method, the Ki for ATB-BMPA was found to be 338 +/- 37 microM at 0 degrees C and 368 +/- 59 microM at 20 degrees C. This was similar to the concentration of ATB-BMPA required to half-maximally inhibit D-galactose uptake (Ki = 297 +/- 53 microM). The new photoaffinity reagent labelled the glucose transporter in intact cells but, because of its improved selectivity, was also used to label the glucose transporter in isolated erythrocyte membranes. The ATB-BMPA-labelled glucose transporter was 80% immunoprecipitated by anti-(GLUT1-C-terminal peptide) antibody, which shows that the GLUT1 glucose transporter is the major isoform present in erythrocytes. The labelling of the glucose transporter at its exofacial site, and the adoption of an outward-facing conformation, renders the transport system resistant to thermolysin and trypsin treatment. Trypsin treatment of the unlabelled glucose transporter in erythrocyte membranes produced an 18 kDa fragment which was subsequently labelled by ATB-BMPA, but had low affinity for this exofacial ligand. This suggests that the trypsin-treated transporter adopts an inward-facing conformation. The ability of D-glucose to displace ATB-BMPA from the native transporter and from the 18 kDa trypsin fragment have been compared. The D-glucose concentration which was required to obtain half-maximal inhibition of ATB-BMPA labelling was 6-fold lower for the 18 kDa tryptic fragment.  相似文献   
88.
89.
90.
Rhodobacter capsulatus strain BK5 possesses a membrane bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. The enzyme in strain BK5 is shown to be both functionally and structurally related to the nitrate reductase of Paracoccus denitrificans and Escherichia coli.Abbreviation TMAO trimethylamine-N-oxide  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号