首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9797篇
  免费   1050篇
  国内免费   3篇
  2022年   85篇
  2021年   130篇
  2020年   85篇
  2019年   121篇
  2018年   143篇
  2017年   142篇
  2016年   185篇
  2015年   345篇
  2014年   385篇
  2013年   482篇
  2012年   626篇
  2011年   637篇
  2010年   401篇
  2009年   367篇
  2008年   551篇
  2007年   520篇
  2006年   476篇
  2005年   465篇
  2004年   394篇
  2003年   406篇
  2002年   409篇
  2001年   199篇
  2000年   181篇
  1999年   200篇
  1998年   167篇
  1997年   94篇
  1996年   102篇
  1995年   95篇
  1994年   89篇
  1993年   78篇
  1992年   108篇
  1991年   98篇
  1990年   102篇
  1989年   109篇
  1988年   105篇
  1987年   95篇
  1986年   89篇
  1985年   103篇
  1984年   83篇
  1983年   68篇
  1982年   75篇
  1981年   67篇
  1980年   71篇
  1978年   76篇
  1976年   63篇
  1975年   67篇
  1974年   72篇
  1973年   64篇
  1972年   60篇
  1971年   63篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Although Ca2+ is the principal regulator of contraction in striated muscle, in vitro evidence suggests that some actin-myosin interaction is still possible even in its absence. Whether this Ca2+-independent activation (CIA) occurs under physiological conditions remains unclear, as does its potential impact on the function of intact cardiac muscle. The purpose of this study was to investigate CIA using computational analysis. We added a structurally motivated representation of this phenomenon to an existing myofilament model, which allowed predictions of CIA-dependent muscle behavior. We found that a certain amount of CIA was essential for the model to reproduce reported effects of nonfunctional troponin C on myofilament force generation. Consequently, those data enabled estimation of ΔGCIA, the energy barrier for activating a thin filament regulatory unit in the absence of Ca2+. Using this estimate of ΔGCIA as a point of reference (∼7 kJ mol−1), we examined its impact on various aspects of muscle function through additional simulations. CIA decreased the Hill coefficient of steady-state force while increasing myofilament Ca2+ sensitivity. At the same time, CIA had minimal effect on the rate of force redevelopment after slack/restretch. Simulations of twitch tension show that the presence of CIA increases peak tension while profoundly delaying relaxation. We tested the model’s ability to represent perturbations to the Ca2+ regulatory mechanism by analyzing twitch records measured in transgenic mice expressing a cardiac troponin I mutation (R145G). The effects of the mutation on twitch dynamics were fully reproduced by a single parameter change, namely lowering ΔGCIA by 2.3 kJ mol−1 relative to its wild-type value. Our analyses suggest that CIA is present in cardiac muscle under normal conditions and that its modulation by gene mutations or other factors can alter both systolic and diastolic function.  相似文献   
952.
Lipases (EC 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates, such as triacylglycerols, phospholipids, and other insoluble substrates, acting in aqueous as well as in low-water media, thus being of considerable physiological significance with high interest also for their industrial applications. The hydrolysis reaction follows a two-step mechanism, or “interfacial activation,” with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Among lipases, Candida antarctica lipase B (CALB) has never shown any significant interfacial activation, and a closed conformation of CALB has never been reported, leading to the conclusion that its behavior was due to the absence of a lid regulating the access to the active site. The lid open and closed conformations and their protonation states are observed in the crystal structure of CALB at 0.91 Å resolution. Having the open and closed states at atomic resolution allows relating protonation to the conformation, indicating the role of Asp145 and Lys290 in the conformation alteration. The findings explain the lack of interfacial activation of CALB and offer new elements to elucidate this mechanism, with the consequent implications for the catalytic properties and classification of lipases.  相似文献   
953.
In response to DNA damage, two general but fundamental processes occur in the cell: (1) a DNA lesion is recognized and repaired, and (2) concomitantly, the cell halts the cell cycle to provide a window of opportunity for repair to occur. An essential factor for a proper DNA-damage response is the heterotrimeric protein complex Replication Protein A (RPA). Of particular interest is hyperphosphorylation of the 32-kDa subunit, called RPA2, on its serine/threonine-rich amino (N) terminus following DNA damage in human cells. The unstructured N-terminus is often referred to as the phosphorylation domain and is conserved among eukaryotic RPA2 subunits, including Rfa2 in Saccharomyces cerevisiae. An aspartic acid/alanine-scanning and genetic interaction approach was utilized to delineate the importance of this domain in budding yeast. It was determined that the Rfa2 N-terminus is important for a proper DNA-damage response in yeast, although its phosphorylation is not required. Subregions of the Rfa2 N-terminus important for the DNA-damage response were also identified. Finally, an Rfa2 N-terminal hyperphosphorylation-mimetic mutant behaves similarly to another Rfa1 mutant (rfa1-t11) with respect to genetic interactions, DNA-damage sensitivity, and checkpoint adaptation. Our data indicate that post-translational modification of the Rfa2 N-terminus is not required for cells to deal with “repairable” DNA damage; however, post-translational modification of this domain might influence whether cells proceed into M-phase in the continued presence of unrepaired DNA lesions as a “last-resort” mechanism for cell survival.  相似文献   
954.
955.
956.
In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595–605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually.  相似文献   
957.
The impact of histone deacetylases (HDACs) in the control of gonadotropin releasing hormone (GnRH) neuronal development is unknown. We identified an increase in many HDACs in GT1-7 (differentiated) compared with NLT (undifferentiated) GnRH neuronal cell lines. Increased HDAC9 mRNA and protein and specific deacetylase activity in GT1-7 cells suggested a functional role. Introduction of HDAC9 in NLT cells protected from serum withdrawal induced apoptosis and impaired basal neuronal cell movement. Conversely, silencing of endogenous HDAC9 in GT1-7 cells increased apoptosis and cell movement. Comparison of WT and mutant HDAC9 constructs demonstrated that the HDAC9 pro-survival effects required combined cytoplasmic and nuclear localization, whereas the effects on cell movement required a cytoplasmic site of action. Co-immunoprecipitation demonstrated a novel interaction of HDAC9 selectively with the Class IIb HDAC6. HDAC6 was also up-regulated at the mRNA and protein levels, and HDAC6 catalytic activity was significantly increased in GT1-7 compared with NLT cells. HDAC9 interacted with HDAC6 through its second catalytic domain. Silencing of HDAC6, HDAC9, or both, in GT1-7 cells augmented apoptosis compared with controls. HDAC6 and -9 had additive effects to promote cell survival via modulating the BAX/BCL2 pathway. Silencing of HDAC6 resulted in an activation of movement of GT1-7 cells with induction in acetylation of α-tubulin. Inhibition of HDAC6 and HDAC9 together resulted in an additive effect to increase cell movement but did not alter the acetylation of αtubulin. Together, these studies identify a novel interaction of Class IIa HDAC9 with Class IIb HDAC6 to modulate cell movement and survival in GnRH neurons.  相似文献   
958.
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号