首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   8篇
  148篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   2篇
  2010年   7篇
  2009年   6篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1966年   2篇
  1948年   2篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
81.
Being born small for gestational age (SGA), a proxy for intrauterine growth restriction (IUGR) and prenatal famine exposure are both associated with a greater risk of metabolic disease. Both associations have been hypothesized to involve epigenetic mechanisms. We investigated whether prenatal growth restriction early in pregnancy was associated with changes in DNA methylation at loci that were previously shown to be sensitive to early gestational famine exposure. We compared 38 individuals born preterm (<32 weeks) and with a birth weight too low for their gestational age (less than −1SDS; SGA) with 75 individuals born preterm but with a birth weight appropriate for their gestational age (greater than −1SDS) and a normal postnatal growth (greater than −1SDS at three months post term; AGA). The SGA individuals were not only lighter at birth, but also had a smaller length (p = 3.3 × 10−13) and head circumference at birth (p = 4.1 × 10−13). The DNA methylation levels of IGF2, GNASAS, INSIGF and LEP were 48.5, 47.5, 79.4 and 25.7% respectively. This was not significantly different between SGA and AGA individuals. Risk factors for being born SGA, including preeclampsia and maternal smoking, were also not associated with DNA methylation at these loci. Growth restriction early in development is not associated with DNA methylation at loci shown to be affected by prenatal famine exposure. Our and previous results by others indicate that prenatal growth restriction and famine exposure may be associated with different epigenetic changes or non-epigenetic mechanisms that may lead to similar later health outcomes.Key words: SGA, DOHAD, IUGR, DNA methylation, famine, IGF2, LEP, INS, GNASAS  相似文献   
82.
83.
84.
TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.  相似文献   
85.
Abstract Bacteria are key organisms in the processing of dissolved organic carbon (DOC) in aquatic ecosystems. Their growth depends on both organic substrates and inorganic nutrients. The importance of allochthonous DOC, usually highly colored, as bacterial substrate can be modified by photobleaching. In this study, we examined how colored DOC (CDOC) photobleaching, and phosphorus (P) and nitrogen (N) availability, affect bacterial growth. Five experiments were conducted, manipulating nutrients (P and N) and sunlight exposure. In almost every case, nutrient additions had a significant, positive effect on bacterial abundance, production, and growth efficiency. Sunlight exposure (CDOC photobleaching) had a significant, positive effect on bacterial abundance and growth efficiency. We also found a significant, positive interaction between these two factors. Thus, bacterial use of CDOC was accelerated under sunlight exposure and enhanced P and N concentrations. In addition, the accumulation of cells in sunlight treatments was dependent on nutrient availability. More photobleached substrate was converted into bacterial cells in P- and N-enriched treatments. These results suggest nutrient availability may affect the biologically-mediated fate (new biomass vs respiration) of CDOC.  相似文献   
86.
87.
Inhibition kinetics of two isosteric analogues of GDP-fucose (GDP-Fuc) were investigated against fucosyltransferase V using electrospray ionization mass spectrometry coupled to multiple reaction monitoring. The carba-Fuc analogue was found to be a competitive inhibitor with a K(i) value of 67.1+/-9.8 microM, similar to the K(m) value for GDP-Fuc (50.4+/-5.5 microM), while the C-Fuc analogue exhibited significantly weak competitive inhibition with a K(i) value of 889+/-93 microM.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号