首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   44篇
  国内免费   1篇
  447篇
  2021年   8篇
  2019年   2篇
  2018年   6篇
  2017年   10篇
  2016年   7篇
  2015年   10篇
  2014年   14篇
  2013年   15篇
  2012年   26篇
  2011年   19篇
  2010年   25篇
  2009年   18篇
  2008年   17篇
  2007年   21篇
  2006年   12篇
  2005年   7篇
  2004年   8篇
  2003年   22篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1998年   12篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   8篇
  1992年   7篇
  1991年   15篇
  1990年   11篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
  1971年   3篇
  1970年   2篇
  1969年   4篇
  1964年   2篇
  1959年   2篇
排序方式: 共有447条查询结果,搜索用时 0 毫秒
441.
442.
443.
444.
445.
We report collection of 2.5 A resolution X-ray diffraction data from newly grown crystals of the rare 'small unit cell' form of the long snake neurotoxin, alpha-bungarotoxin. The previous model of the molecule has been rebuilt, and refined using least-square methods to a crystallographic residual of 0.24 at 2.5 A resolution. alpha-Bungarotoxin's crystal structure is compared with the crystal structures of two other snake neurotoxins (cobratoxin and erabutoxin), and with its solution structure inferred from spectroscopic studies. Significant differences include less beta-sheet in bungarotoxin's crystal structure than in solution, or in the crystal structures of other neurotoxins, and an unusual orientation in the crystal of the invariant tryptophan. The functional, binding surface of bungarotoxin is described; it consists primarily of hydrophobic and hydrogen-bonding groups and only a few charged side-chains. The structure is compared with experimental binding parameters for neurotoxins.  相似文献   
446.
Ten stranded cetaceans, representing five species, from the Oregon Coast were examined between 1973-1977. Fourteen genera of parasites, together with the pathogenesis and pathology associated with the presence of some of these parasites are reported.  相似文献   
447.
Sheep are a commonly used and validated model for cardiovascular research and, more specifically, for heart valve research. Implanting a heart valve on the arrested heart in sheep is complex and is often complicated by difficulties in restarting the heart, causing significant on-table mortality. Therefore, optimal cardioprotective management during heart valve implantation in sheep is essential. However, little is known about successful cardioprotective management techniques in sheep. This article reports our experience in the cardioprotective management of 20 female sheep that underwent surgical aortic valve replacement with a stented tissue-engineered heart valve prosthesis. During this series of experiments, we modified our cardioprotection protocol to improve survival. We emphasize the importance of total body hypothermia and external cooling of the heart. Furthermore, we recommend repeated cardioplegia administration at 20 min intervals during surgery, with the final dosage of cardioplegia given immediately before the de-clamping of the aorta. To reduce the number of defibrillator shocks during a state of ventricular fibrillation (VF), we have learned to restart the heart by reclamping the aorta, administering cardioplegia until cardiac arrest, and de-clamping the aorta thereafter. Despite these encouraging results, more research is needed to finalize a protocol for this procedure.

Sheep are a commonly used and well-validated model for cardiovascular research, particularly for heart valve research, as blood pressure, heart rate, cardiac output, and intracardiac pressures are similar between sheep and humans. Sheep are particularly useful for heart valve research because observable changes in implanted heart valve bioprostheses that would take several years to develop in humans are apparent after only a few months in sheep.3,11 This feature allows the ovine model to provide relevant and important information about heart valve prostheses in a relatively short time span. The first preclinical step in developing novel heart valves is to test the valve in the pulmonary position in sheep. This surgical technique is relatively easy, as the procedure can be performed on a beating heart in a low-pressure circulation. However, aortic valve surgery is the most frequently performed valvular surgical intervention in human patients.12 Thus, an important next step is to prove the clinical applicability of a new valve by testing the valve in-vivo in the aortic position in an animal model. In contrast to pulmonary valve replacement, aortic valve replacement must be performed on an arrested heart, which makes the surgical procedure significantly more complex. The sheep is a difficult model for aortic valve replacements due to its narrow annulus, short distance between the annulus and coronary ostia, a short ascending aorta, and difficulty in de-airing of the heart prior to suturing the aortotomy.19 Consequently, high on-table mortality rates, ranging from 9% to 33%, have been reported.1,18,21,24 Furthermore, the incidence of mortality during the first 30 d after surgery, directly related to the surgical procedure, is often high, ranging from 17% to 50%.1,2,16,18,21 Therefore, optimizing cardioprotective strategies during surgery would improve postoperative survival. However, little is known about protective strategies in sheep. In the current series of experiments, we implanted stented, tissue engineered, aortic heart valve prostheses in 20 adult domestic sheep and developed cardioprotective techniques to increase survival rates. In this observational study, we share our experience and insights regarding cardioprotective management to potentially improve the outcome of future surgeries that require an arrested heart in sheep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号