首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   9篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   7篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   10篇
  2007年   8篇
  2006年   7篇
  2005年   12篇
  2004年   6篇
  2003年   1篇
  2002年   2篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   7篇
  1973年   3篇
  1972年   4篇
  1969年   3篇
  1968年   2篇
  1964年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
81.
82.
83.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.  相似文献   
84.
85.
86.
Frozen sections stained with Oil-red-O and semithin (0.5 μm) plastic sections stained with toluidine blue revealed an abundance of fat globules of various sizes in all strata of the epidermis of bottlenose dolphins (Tursiops truncatus and T. gilli). The fat was rather evenly distributed but sometimes appeared as circumscribed areas of heavier concentration involving hundreds of cells (as seen in a single plane). Occasionally, there were smaller groups of epidermal cells heavily loaded with lipid. The dermis presented a unique phenomenon in the presence of abundant extracellular fat distributed among the collagen bundles as droplets of various sizes or as larger, irregularly shaped lipid particles that seemed to conform to the spaces between collagen bundles. These lipid particles were sometimes seen to be closely applied to the dermal surface of the stratum basale. Equally unusual was the presence of lipid particles of various sizes and shapes in the lumen of some of the vessels of the dermal papillae. Granular cells resembling mast cells were commonly seen in the papillary dermis and some were closely associated with lipid particles. Blood vessels of the reticular dermis tended to have collections of lipid droplets in the loose connective tissue often found adjacent to the tunica adventitia. It is postulated that the extracellular dermal lipids (probably mainly triglycerides) are broken down to free fatty acids that diffuse into the basal layer of the epidermis and are there resynthesized into triglycerides. Possible uses for the epidermal lipids are discussed.  相似文献   
87.
MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15-E18 neurons versus rat primary E15-E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed.  相似文献   
88.
The ruthenium complexes, trans-[Ru(phen-NH-phen)(eina)2](PF6)2 and trans-[Ru(phen-NH-phen)(ina)2](PF6)2 where phen-NH-phen = N,N-bis(1,10-phenanthroline-2-yl)amine, ina = isonicotinic acid and eina = ethyl isonicotinate, have been synthesized and characterized by 1H NMR, elemental analysis, and IR spectroscopy. The compounds were non-emissive at room temperature, but displayed intense photoluminescence in 4:1 ethanol/methanol glasses at 77 K with corrected emission maximum at 570-580 nm. A quasi-reversible wave observed in cyclic voltammetry experiments was assigned to the RuIII/II couple, (trans-[Ru(phen-NH-phen)(eina)2)3+/2+ = +1.22 V versus Ag/AgCl. The trans-[Ru(phen-NH-phen)(ina)2](PF6)2 compound was found to bind to nanocrystalline TiO2 thin films from acetonitrile solution. Pulsed 532 nm excitation of trans-[Ru(phen-NH-phen)(ina)2](PF6)2 anchored to mesoporous nanocrystalline TiO2 thin films resulted in an absorption difference spectra consistent with the formation of an interfacial charge separated state trans-[RuIII (phen-NH-phen)(ina)2]+/TiO2 (e). The formation of this state could not be time resolved, consistent with rapid excited state injection into the TiO2, kinj > 108 s−1. Comparative measurements with a thin film actinometer yielded an injection quantum yield (?inj) of 0.8. Charge recombination required milliseconds for completion and followed a bi-second-order equal concentration kinetic model with k1 = 1.0 × 108 s−1, and k2 = 3.0 × 105 s−1. In regenerative solar cells with 0.5 M LiI and 0.005 M I2 in acetonitrile, incident photon-to-current efficiencies were typically less than 10%.  相似文献   
89.
Restoration of California native perennial grassland is often initiated with cultivation to reduce the density and cover of non‐native annual grasses before seeding with native perennials. Tillage is known to adversely impact agriculturally cultivated land; thus changes in soil biological functions, as indicated by carbon (C) turnover and C retention, may also be negatively affected by these restoration techniques. We investigated a restored perennial grassland in the fourth year after planting Nassella pulchra, Elymus glaucus, and Hordeum brachyantherum ssp. californicum for total soil C and nitrogen (N), microbial biomass C, microbial respiration, CO2 concentrations in the soil atmosphere, surface efflux of CO2, and root distribution (0‐ to 15‐, 15‐ to 30‐, 30‐ to 60‐, and 60‐ to 80‐cm depths). A comparison was made between untreated annual grassland and plots without plant cover still maintained by tillage and herbicide. In the uppermost layer (0‐ to 15‐cm depth), total C, microbial biomass C, and respiration were lower in the tilled, bare soil than in the grassland soils, as was CO2 efflux from the soil surface. Root length near perennial bunchgrasses was lower at the surface and greater at lower depths than in the annual grass–dominated areas; a similar but less pronounced trend was observed for root biomass. Few differences in soil biological or chemical properties occurred below 15‐cm depth, except that at lower depths, the CO2 concentration in the soil atmosphere was lower in the plots without vegetation, possibly from reduced production of CO2 due to the lack of root respiration. Similar microbiological properties in soil layers below 15‐cm depth suggest that deeper microbiota rely on more recalcitrant C sources and are less affected by plant removal than in the surface layer, even after 6 years. Without primary production, restoration procedures with extended periods of tillage and herbicide applications led to net losses of C during the plant‐free periods. However, at 4 years after planting native grasses, soil microbial biomass and activity were nearly the same as the former conditions represented by annual grassland, suggesting high resilience to the temporary disturbance caused by tillage.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号