全文获取类型
收费全文 | 93篇 |
免费 | 11篇 |
专业分类
104篇 |
出版年
2022年 | 2篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 6篇 |
2013年 | 8篇 |
2012年 | 5篇 |
2011年 | 2篇 |
2010年 | 7篇 |
2009年 | 9篇 |
2008年 | 3篇 |
2007年 | 6篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有104条查询结果,搜索用时 15 毫秒
71.
Stefanie Schabhüttl Peter Hingsamer Gabriele Weigelhofer Thomas Hein Achim Weigert Maren Striebel 《Oecologia》2013,171(2):527-536
Phytoplankton play an important role as primary producers and thus can affect higher trophic levels. Phytoplankton growth and diversity may, besides other factors, be controlled by seasonal temperature changes and increasing water temperatures. In this study, we investigated the combined effects of temperature and diversity on phytoplankton growth. In a controlled laboratory experiment, monocultures of 15 freshwater phytoplankton taxa (green algae, cyanobacteria, and diatoms) as well as 25 mixed communities of different species richness (2–12 species) and taxa composition were exposed to constant temperatures of 12, 18, and 24 °C. Additionally, they were exposed to short-term daily temperature peaks of +4 °C. Increased species richness had a positive effect on phytoplankton growth rates and phosphorous content at all temperature levels, with maximum values occurring at 18 °C. Overyielding was observed at almost all temperature levels and could mostly be explained by complementary traits. Higher temperatures resulted in higher fractions of cyanobacteria in communities. This negative effect of temperature on phytoplankton diversity following a shift in community composition was most obvious in communities adapted to cooler temperatures, pointing to the assumption that relative temperature changes may be more important than absolute ones. 相似文献
72.
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage. 相似文献
73.
Two polarized patterns (Th1 and Th2) of cytokines regulate inflammatory responses. Each cytokine pattern inhibits production of the opposing pattern. Lymphocytes from inflamed intestine due to Crohn's disease secrete a Th1 pattern of cytokines. Crohn's disease is most prevalent in highly industrialized countries with temperate climates. It occurs rarely in tropical third world countries with poor sanitation. We propose that exposure to an environmental agent predisposes individuals to Crohn's disease. Parasitic worms (helminths) are common in tropical climates and in populations subject to crowding and poor sanitation. Children are most subject to helminthic colonization. Many helminths live within or migrate through the human gut where they interact with the mucosal immune system. The host mounts a mucosal response that includes Th2 cytokine production limiting helminthic colonization. Helminths and their eggs probably are the most potent stimulators of mucosal Th2 responses. The Th2 response provoked by parasitic worms can modulate immune reactions to unrelated parasitic, bacterial, and viral infections. Many people in developed countries now live in increasingly hygienic environments, avoiding exposure to helminths. Perhaps failure to acquire these parasites and experience mucosal Th2 conditioning predisposes to Crohn's disease, which is an overly active Th1 inflammation. 相似文献
74.
Victoria?PetriEmail author G?Thomas?Hayman Marek?Tutaj Jennifer?R?Smith Stanley?JF?Laulederkind Shur-Jen?Wang Rajni?Nigam Jeff?De Pons Mary?Shimoyama Melinda?R?Dwinell Elizabeth?A?Worthey Howard?J?Jacob 《Human genomics》2014,8(1):17
Background
Biological systems are exquisitely poised to respond and adjust to challenges, including damage. However, sustained damage can overcome the ability of the system to adjust and result in a disease phenotype, its underpinnings many times elusive. Unraveling the molecular mechanisms of systems biology, of how and why it falters, is essential for delineating the details of the path(s) leading to the diseased state and for designing strategies to revert its progression. An important aspect of this process is not only to define the function of a gene but to identify the context within which gene functions act. It is within the network, or pathway context, that the function of a gene fulfills its ultimate biological role. Resolving the extent to which defective function(s) affect the proceedings of pathway(s) and how altered pathways merge into overpowering the system's defense machinery are key to understanding the molecular aspects of disease and envisioning ways to counteract it. A network-centric approach to diseases is increasingly being considered in current research. It also underlies the deployment of disease pathways at the Rat Genome Database Pathway Portal. The portal is presented with an emphasis on disease and altered pathways, associated drug pathways, pathway suites, and suite networks.Results
The Pathway Portal at the Rat Genome Database (RGD) provides an ever-increasing collection of interactive pathway diagrams and associated annotations for metabolic, signaling, regulatory, and drug pathways, including disease and altered pathways. A disease pathway is viewed from the perspective of networks whose alterations are manifested in the affected phenotype. The Pathway Ontology (PW), built and maintained at RGD, facilitates the annotations of genes, the deployment of pathway diagrams, and provides an overall navigational tool. Pathways that revolve around a common concept and are globally connected are presented within pathway suites; a suite network combines two or more pathway suites.Conclusions
The Pathway Portal is a rich resource that offers a range of pathway data and visualization, including disease pathways and related pathway suites. Viewing a disease pathway from the perspective of underlying altered pathways is an aid for dissecting the molecular mechanisms of disease.75.
Seth M Barribeau Ben M Sadd Louis du Plessis Mark JF Brown Severine D Buechel Kaat Cappelle James C Carolan Olivier Christiaens Thomas J Colgan Silvio Erler Jay Evans Sophie Helbing Elke Karaus H Michael G Lattorff Monika Marxer Ivan Meeus Kathrin N?pflin Jinzhi Niu Regula Schmid-Hempel Guy Smagghe Robert M Waterhouse Na Yu Evgeny M Zdobnov Paul Schmid-Hempel 《Genome biology》2015,16(1)
76.
Saskia I. Johanns Richard G. Gantin Bawoubadi Wangala Kossi Komlan Wemboo A. Halatoko Meba Banla Potchoziou Karabou Adrian JF Luty Hartwig Schulz-Key Carsten Khler Peter T. Soboslay 《PLoS neglected tropical diseases》2022,16(5)
BackgroundAnnual mass drug administrations (MDA) of ivermectin will strongly reduce Onchocerca volvulus microfilariae (mf) in the skin and in the onchocerciasis patients’ eyes. Ivermectin treatment will also affect the expression of immunity in patients, such that activated immune defenses may help control and contribute to clearance of mf of O. volvulus. Longitudinal surveys are a prerequisite to determining the impact of ivermectin on the status of anti-parasite immunity, notably in risk zones where parasite transmission and active O. volvulus infections persist.Methodology/Principal findingsOnchocerciasis patients were treated annually with ivermectin and their Onchocerca volvulus antigen (OvAg) specific IgG and cellular responses were investigated before and at 30 years post initial ivermectin treatment (30yPT).Repeated annual ivermectin treatments eliminated persisting O. volvulus microfilariae (mf) from the skin of patients and abrogated patent infections. The OvAg-specific IgG1 and IgG4 responses were diminished at 30yPT to the levels observed in endemic controls. Prior to starting ivermectin treatment, OvAg-induced cellular productions of IL-10, IFN-γ, CCL13, CCL17 and CCL18 were low in patients, and at 30yPT, cellular cytokine and chemokine responses increased to the levels observed in endemic controls. In contrast, mitogen(PHA)- induced IL-10, IFN-γ, CCL17 and CCL18 cellular production was diminished. This divergent response profile thus revealed increased parasite antigen-specific but reduced polyclonal cellular responsiveness in patients. The transmission of O. volvulus continued at the patients’ location in the Mô river basin in central Togo 2018 and 2019 when 0.58% and 0.45%, respectively, of Simulium damnosum s.l. vector blackflies carried O. volvulus infections.Conclusions/SignificanceRepeated annual ivermectin treatment of onchocerciasis patients durably inhibited their patent O. volvulus infections despite ongoing low-level parasite transmission in the study area. Repeated MDA with ivermectin affects the expression of immunity in patients. O. volvulus parasite-specific antibody levels diminished to levels seen in infection-free endemic controls. With low antibody levels, antibody-dependent cellular cytotoxic responses against tissue-dwelling O. volvulus larvae will weaken. O. volvulus antigen inducible cytokine and chemokine production increased in treated mf-negative patients, while their innate responsiveness to mitogen declined. Such lower innate responsiveness in elderly patients could contribute to reduced adaptive immune responses to parasite infections and vaccines. On the other hand, increased specific cellular chemokine responses in mf-negative onchocerciasis patients could reflect effector cell activation against tissue invasive larval stages of O. volvulus. The annual Simulium damnosum s.l. biting rate observed in the Mô river basin was similar to levels prior to initiation of MDA with ivermectin, and the positive rtPCR results reported here confirm ongoing O. volvulus transmission. 相似文献
77.
Frank Striebel Frank Imkamp Dennis Özcelik Eilika Weber-Ban 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Posttranslational modifications in the form of covalently attached proteins like ubiquitin (Ub), were long considered an exclusive feature of eukaryotic organisms. The discovery of pupylation, the modification of lysine residues with a prokaryotic, ubiquitin-like protein (Pup), demonstrated that certain bacteria use a tagging pathway functionally related to ubiquitination in order to target proteins for proteasomal degradation. However, functional analogies do not translate into structural or mechanistic relatedness. Bacterial Pup, unlike eukaryotic Ub, does not adopt a β-grasp fold, but is intrinsically disordered. Furthermore, isopeptide bond formation in the pupylation process is carried out by enzymes evolutionary descendent from glutamine synthetases. While in eukaryotes, the proteasome is the main energy-dependent protein degradation machine, bacterial proteasomes exist in addition to other architecturally related degradation complexes, and their specific role along with the role of pupylation is still poorly understood. In Mycobacterium tuberculosis (Mtb), the Pup–proteasome system contributes to pathogenicity by supporting the bacterium's persistence within host macrophages. Here, we describe the mechanism and structural framework of pupylation and the targeting of pupylated proteins to the proteasome complex. Particular attention is given to the comparison of the bacterial Pup–proteasome system and the eukaryotic ubiquitin–proteasome system. Furthermore, the involvement of pupylation and proteasomal degradation in Mtb pathogenesis is discussed together with efforts to establish the Pup–proteasome system as a drug target. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. 相似文献
78.
79.
80.
Adhemar Longatto Filho Tiago Gil Oliveira Céline Pinheiro Marcos Brasilino de Carvalho Otávio Alberto Curioni Ana Maria da Cunha Mercante Fernando C Schmitt Gilka JF Gattás 《World journal of surgical oncology》2007,5(1):140