首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   11篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2010年   7篇
  2009年   9篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
51.
Prion protein (PrP) is a cell surface glycoprotein which is required for susceptibility to prion infection and disease. However, PrP is expressed in many different cell types located in numerous organs. Therefore, in addition to its role in prion diseases, PrP may have a large variety of other biological functions involving the nervous system and other systems. We recently showed that susceptibility to kainate-induced seizures differed in Prnp−/− and Prnp+/+ mice on the C57BL/10SnJ background. However, in a genetic complementation experiment a PrP expressing transgene was not able to rescue the Prnp+/+ phenotype. Thus the apparent effect of PrP on seizures was actually due to genes flanking the Prnp−/− gene rather that the Prnp deletion itself. We discuss here several pitfalls in the use of Prnp−/− genotypes expressed in various mouse genetic backgrounds to determine the functions of PrP. In particular, the use of Prnp−/− mice with heterogeneous mixed genetic backgrounds may have weakened the conclusions of many previous experiments. Use of either co-isogenic mice or congenic mice with more homogeneous genetic backgrounds is now feasible. For congenic mice, the potential problem of flanking genes can be mitigated by the use of appropriate transgene rescue experiments to confirm the conclusions.  相似文献   
52.
Recurrent Clostridium difficile infection (CDI) can be effectively treated by infusion of a healthy donor faeces suspension. However, it is unclear what factors determine treatment efficacy. By using a phylogenetic microarray platform, we assessed composition, diversity and dynamics of faecal microbiota before, after and during follow-up of the transplantation from a healthy donor to different patients, to elucidate the mechanism of action of faecal infusion. Global composition and network analysis of the microbiota was performed in faecal samples from nine patients with recurrent CDI. Analyses were performed before and after duodenal donor faeces infusion, and during a follow-up of 10 weeks. The microbiota data were compared with that of the healthy donors. All patients successfully recovered. Their intestinal microbiota changed from a low-diversity diseased state, dominated by Proteobacteria and Bacilli, to a more diverse ecosystem resembling that of healthy donors, dominated by Bacteroidetes and Clostridium groups, including butyrate-producing bacteria. We identified specific multi-species networks and signature microbial groups that were either depleted or restored as a result of the treatment. The changes persisted over time. Comprehensive and deep analyses of the microbiota of patients before and after treatment exposed a therapeutic reset from a diseased state towards a healthy profile. The identification of microbial groups that constitute a niche for C. difficile overgrowth, as well as those driving the reinstallation of a healthy intestinal microbiota, could contribute to the development of biomarkers predicting recurrence and treatment outcome, identifying an optimal microbiota composition that could lead to targeted treatment strategies.  相似文献   
53.
Transmissible spongiform encephalopathies (TSE) or prion diseases are neurodegenerative disorders associated with conversion of normal host prion protein (PrP) to a misfolded, protease-resistant form (PrPres). Genetic variations of prion protein in humans and animals can alter susceptibility to both familial and infectious prion diseases. The N171S PrP polymorphism is found mainly in humans of African descent, but its low incidence has precluded study of its possible influence on prion disease. Similar to previous experiments of others, for laboratory studies we created a transgenic model expressing the mouse PrP homolog, PrP-170S, of human PrP-171S. Since PrP polymorphisms can vary in their effects on different TSE diseases, we tested these mice with four different strains of mouse-adapted scrapie. Whereas 22L and ME7 scrapie strains induced typical clinical disease, neuropathology and accumulation of PrPres in all transgenic mice at 99-128 average days post-inoculation, strains RML and 79A produced clinical disease and PrPres formation in only a small subset of mice at very late times. When mice expressing both PrP-170S and PrP-170N were inoculated with RML scrapie, dominant-negative inhibition of disease did not occur, possibly because interaction of strain RML with PrP-170S was minimal. Surprisingly, in vitro PrP conversion using protein misfolding cyclic amplification (PMCA), did not reproduce the in vivo findings, suggesting that the resistance noted in live mice might be due to factors or conditions not present in vitro. These findings suggest that in vivo conversion of PrP-170S by RML and 79A scrapie strains was slow and inefficient. PrP-170S mice may be an example of the conformational selection model where the structure of some prion strains does not favor interactions with PrP molecules expressing certain polymorphisms.  相似文献   
54.
Neurodegenerative diseases are typically associated with an activation of glia and an increased level of cytokines. In our previous studies of prion disease, the cytokine response in the brains of clinically sick scrapie-infected mice was restricted to a small group of cytokines, of which IL-12p40, CCL2, and CXCL10 were present at the highest levels. The goal of our current research was to determine the relationship between cytokine responses, gliosis, and neuropathology during prion disease. Here, in time course studies of C57BL/10 mice intracerebrally inoculated with 22L scrapie, abnormal protease-resistant prion protein (PrPres), astrogliosis, and microgliosis were first detected at 40 days after intracerebral scrapie inoculation. In cytokine studies, IL-12p40 was first elevated by 60 days; CCL3, IL-1β, and CXCL1 were elevated by 80 days; and CCL2 and CCL5 were elevated by 115 days. IL-12p40 showed the most extensive increase throughout disease and was 30-fold above control levels at the terminal stage. Because of the early onset and dramatic elevation of IL-12p40 during scrapie, we investigated whether IL-12p40 contributed to the development of prion disease neuropathogenesis by using three different scrapie strains (22L, RML, 79A) to infect knockout mice in which the gene encoding IL-12p40 was deleted. We also studied knockout mice lacking IL-12p35, which combines with IL-12p40 to form active IL-12 heterodimers. In all instances, knockout mice did not differ from control mice in survival time, clinical tempo, or levels of spongiosis, gliosis, or PrPres in the brain. Thus, neither IL-12p40 nor IL-12p35 molecules were required for prion disease-associated neurodegeneration or neuroinflammation.  相似文献   
55.
Fifty-two strains from eight species of Fusarium were analyzed by rapid rRNA sequencing. Two highly variable stretches (138 and 214 nucleotides) of the 5' end of the 28S-like rRNA molecule were sequenced. Such stretches permit evaluation of the divergence between closely related species and even between varieties within a species. The phylogenetic tree computed from the number of nucleotide differences shows seven Fusarium species to be more closely related to one another than the eighth species, F. nivale, is to them. On the basis of these data, we discuss both the phylogenetic value of taxonomical criteria and the impact of our findings on the demarcation of the genus Fusarium. We conclude that this method is suitable for establishing a precise phylogeny between closely related species within a genus.   相似文献   
56.
57.
58.

Background  

Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.  相似文献   
59.
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylene-diaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages.  相似文献   
60.
Detecting protein-protein interactions other than those of antibody-antigen pairs still represents a demanding and tedious task. In the present work, a novel method as an alternative to current molecular biology-based detection procedures is established. It solely relies on the change of fluorescence decay times of the protein's intrinsic fluorophores tryptophan and tyrosine due to protein-protein interaction. Unlike previously utilized related methods, no labelling of the binding partners is required. This opens the possibility to detect proteins and their natural interactions without perturbation due to chemical alteration. The technique uses immobilization of one of the protein partners onto solid supports, which allows performance of protein binding studies in the microarray format. Fluorescence lifetime experiments of proteins in their different binding states have been applied to protease/protease-substrate pairs, as well as to the tubulin/kinesin system. Different binding behavior of proteins in solution towards protein partners immobilized on protein microarrays was detected with regard to binding specificity and protein amount. This label-free method for analyzing protein microarrays offers broad applicability ranging from principal investigations of protein interactions to applications in molecular biology and medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号