首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   57篇
  国内免费   1篇
  2021年   15篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   15篇
  2014年   14篇
  2013年   17篇
  2012年   26篇
  2011年   21篇
  2010年   15篇
  2009年   17篇
  2008年   19篇
  2007年   17篇
  2006年   13篇
  2005年   20篇
  2004年   19篇
  2003年   16篇
  2002年   16篇
  2001年   19篇
  2000年   16篇
  1999年   9篇
  1998年   4篇
  1997年   10篇
  1996年   9篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1987年   7篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1982年   9篇
  1981年   6篇
  1979年   4篇
  1978年   6篇
  1977年   10篇
  1976年   4篇
  1969年   7篇
  1942年   3篇
  1941年   6篇
  1940年   6篇
  1939年   7篇
  1938年   3篇
排序方式: 共有547条查询结果,搜索用时 468 毫秒
61.
Geobacter metallireducens and G. sulfurreducens have been classified as strictly anaerobic bacteria which grow and thrive in subsurface and sediment environments. Hopanoids are pentacyclic triterpenoid lipids and are important for bacterial membrane stability and functioning. Hopanoids predominantly occur in aerobically growing bacteria of oxic environments. They rarely have been found in facultatively anaerobic bacteria and, to date, not at all in strict anaerobes. Our research shows that anaerobically grown G. metallireducens and G. sulfurreducens bacteria contain a range of hopanoid lipids, such as diploptene (i.e. hop-22(29)-ene) and hop-21-ene, and more complex, elongated hopanoids. In geological formations, diagenetic derivatives of hopanoids are widely used as biomarkers and are recognized as molecular fossils of bacterial origin. To date, these biomarkers have largely been interpreted as those derived from ancient oxic environments. Our findings presented here suggest that this interpretation needs to be re-evaluated. In addition to the origin in oxic environments, 'geohopanoids' may originate from ancient anaerobic environments as well.  相似文献   
62.
Linker histone H1 is the major factor that stabilizes higher order chromatin structure and modulates the action of chromatin-remodeling enzymes. We have previously shown that parathymosin, an acidic, nuclear protein binds to histone H1 in vitro and in vivo. Confocal laser scanning microscopy reveals a nuclear punctuate staining of the endogenous protein in interphase cells, which is excluded from dense heterochromatic regions. Using an in vitro chromatin reconstitution system under physiological conditions, we show here that parathymosin (ParaT) inhibits the binding of H1 to chromatin in a dose-dependent manner. Consistent with these findings, H1-containing chromatin assembled in the presence of ParaT has reduced nucleosome spacing. These observations suggest that interaction of the two proteins might result in a conformational change of H1. Fluorescence spectroscopy and circular dichroism-based measurements on mixtures of H1 and ParaT confirm this hypothesis. Human sperm nuclei challenged with ParaT become highly decondensed, whereas overexpression of green fluorescent protein- or FLAG-tagged protein in HeLa cells induces global chromatin decondensation and increases the accessibility of chromatin to micrococcal nuclease digestion. Our data suggest a role of parathymosin in the remodeling of higher order chromatin structure through modulation of H1 interaction with nucleosomes and point to its involvement in chromatin-dependent functions.  相似文献   
63.
Inhibitor of apoptosis proteins (IAPs) such as XIAP subvert apoptosis by binding and inhibiting caspases. Because occupation of the XIAP BIR3 peptide binding pocket by Smac abolishes the XIAP–caspase 9 interaction, it is a proapoptotic event of great therapeutic interest. An assay for pocket binding was developed based on the displacement of Smac 7-mer from BIR3. Through the physical and biochemical analysis of a variety of peptides, we have determined the minimum sequence required for inhibition of the Smac–BIR3 interaction and detailed the dimensions and topology of the BIR3 peptide binding pocket. This work describes the structure–activity relationship (SAR) for peptide inhibitors of Smac-IAP binding.  相似文献   
64.
65.
Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners.  相似文献   
66.
To further understand the role of neuro-immunological interactions in the pathogenesis of rheumatoid arthritis (RA), we studied the influence of sympathetic neurotransmitters on cytokine production of T cells in patients with RA. T cells were isolated from peripheral blood of RA patients or healthy donors (HDs), and stimulated via CD3 and CD28. Co-incubation was carried out with epinephrine or norepinephrine in concentrations ranging from 10(-5) M to 10(-11) M. Interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha, interleukin (IL)-4, and IL-10 were determined in the culture supernatant with enzyme-linked immunosorbent assay. In addition, IFN-gamma and IL-10 were evaluated with intracellular cytokine staining. Furthermore, basal and agonist-induced cAMP levels and catecholamine-induced apoptosis of T cells were measured. Catecholamines inhibited the synthesis of IFN-gamma, TNF-alpha, and IL-10 at a concentration of 10(-5) M. In addition, IFN-gamma release was suppressed by 10(-7) M epinephrine. Lower catecholamine concentrations exerted no significant effect. A reduced IL-4 production upon co-incubation with 10(-5) M epinephrine was observed in RA patients only. The inhibitory effect of catecholamines on IFN-gamma production was lower in RA patients as compared with HDs. In RA patients, a catecholamine-induced shift toward a Th2 (type 2) polarised cytokine profile was abrogated. Evaluation of intracellular cytokines revealed that CD8-positive T cells were accountable for the impaired catecholaminergic control of IFN-gamma production. The highly significant negative correlation between age and catecholamine effects in HDs was not found in RA patients. Basal and stimulated cAMP levels in T-cell subsets and catecholamine-induced apoptosis did not differ between RA patients and HDs. RA patients demonstrate an impaired inhibitory effect of catecholamines on IFN-gamma production together with a failure to induce a shift of T-cell cytokine responses toward a Th2-like profile. Such an unfavorable situation is a perpetuating factor for inflammation.  相似文献   
67.
Norepinephrine has for many years been known to have three major effects on the pancreatic β-cell which lead to the inhibition of insulin release. These are activation of K(+) channels to hyperpolarize the cell and prevent the gating of voltage-dependent Ca(2+) channels that increase intracellular Ca(2+) concentration ([Ca(2+)](i)) and trigger release; inhibition of adenylyl cyclases, thus preventing the augmentation of stimulated insulin release by cyclic AMP; and a "distal" effect that occurs downstream of increased [Ca(2+)](i) to inhibit exocytosis. All three are mediated by the pertussis toxin (PTX)-sensitive heterotrimeric Gi and Go proteins. The distal inhibitory effect on exocytosis is now known to be due to the binding of G protein βγ subunits to the synaptosomal-associated protein of 25 kDa (SNAP-25) on the soluble NSF attachment protein receptor (SNARE) complex. Recent studies have uncovered two more actions of norepinephrine on the β-cell: 1) retardation of the refilling of the readily releasable granule pool after it has been discharged, an action that is mediated by Gαi(1) and/or Gαi(2); and 2) inhibition of endocytosis that is mediated by Gz. Of importance also are new findings that Gαo regulates the number of docked granules in the β-cell, and that Gαo(2) maintains a tonic inhibitory influence on secretion. The latter provides another explanation as to why PTX, which blocks the effect of Gαo(2), was initially called "islet activating protein." Finally, there is clear evidence that overexpression of α(2A)-adrenergic receptors in β-cells can cause type 2 diabetes.  相似文献   
68.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   
69.
At excitatory synapses in the brain, glutamate released from nerve terminals binds to glutamate receptors to mediate signaling between neurons. Glutamate receptors expressed in heterologous cells show ion channel activity. Recently, native glutamate receptors were shown to contain auxiliary subunits that modulate the trafficking and/or channel properties. The AMPA receptor (AMPAR) can contain TARP and CNIHs as the auxiliary subunits, whereas kainate receptor (KAR) can contain the Neto auxiliary subunit. Each of these auxiliary subunits uniquely modulates the glutamate receptors, and determines properties of native glutamate receptors. A thorough elucidation of the properties of native glutamate receptor complexes is indispensable for the understanding of the molecular machinery that regulates glutamate receptors and excitatory synaptic transmission in the brain.  相似文献   
70.

Background

The use of expanded criteria donor kidneys (ECD) had been associated with worse outcomes. Whole gene expression of pre-implantation allograft biopsies from deceased donor kidneys (DDKs) was evaluated to compare the effect of pulsatile pump preservation (PPP) vs. cold storage preservation (CSP) on standard and ECD kidneys.

Methodology/Principal Findings

99 pre-implantation DDK biopsies were studied using gene expression with GeneChips. Kidneys transplant recipients were followed post transplantation for 35.8 months (range = 24–62). The PPP group included 60 biopsies (cold ischemia time (CIT)  = 1,367+/−509 minutes) and the CSP group included 39 biopsies (CIT = 1,022+/−485 minutes) (P<0.001). Donor age (42.0±14.6 vs. 34.1±14.2 years, P = 0.009) and the percentage of ECD kidneys (PPP = 35% vs. CSP = 12.8%, P = 0.012) were significantly different between groups. A two-sample t-test was performed, and probe sets having a P<0.001 were considered significant. Probe set level linear models were fit using cold ischemia time and CSP/PPP as independent variables to determine significant probe sets (P<0.001) between groups after adjusting for cold ischemia time. Thus, 43 significant genes were identified (P<0.001). Over-expression of genes associated with inflammation (CD86, CD209, CLEC4, EGFR2, TFF3, among others) was observed in the CSP group. Cell-to-cell signaling and interaction, and antigen presentation were the most important pathways with genes significantly over-expressed in CSP kidneys. When the analysis was restricted to ECD kidneys, genes involved in inflammation were also differentially up-regulated in ECD kidneys undergoing CSP. However, graft survival at the end of the study was similar between groups (P = 0.2). Moreover, the incidence of delayed graft function was not significant between groups.

Conclusions/Significance

Inflammation was the most important up-regulated pattern associated with pre-implantation biopsies undergoing CSP even when the PPP group has a larger number of ECD kidneys. No significant difference was observed in delayed graft function incidence and graft function post-transplantation. These findings support the use of PPP in ECD donor kidneys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号