首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   22篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   17篇
  2010年   16篇
  2009年   9篇
  2008年   14篇
  2007年   11篇
  2006年   13篇
  2005年   20篇
  2004年   7篇
  2003年   12篇
  2002年   14篇
  2001年   5篇
  2000年   13篇
  1999年   13篇
  1998年   1篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1993年   1篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   5篇
  1965年   3篇
排序方式: 共有291条查询结果,搜索用时 281 毫秒
31.
Jones AK  Lenz O  Strack A  Buhrke T  Friedrich B 《Biochemistry》2004,43(42):13467-13477
Biosynthesis of the NiFe hydrogenase active site is a complex process involving the action of the Hyp proteins: HypA-HypF. Here we investigate the mechanism of NiFe site biosynthesis in Ralstonia eutropha by examining the interactions between HypC, HypD, HypE, and HypF1. Using an affinity purification procedure based on the Strep-tag II, we purified HypC and HypE from different genetic backgrounds as complexes with other hydrogenase-related proteins and characterized them using immunological analysis. Copurification of HypC and HoxH, the active site-containing subunit of the soluble hydrogenase in R. eutropha, from several different genetic backgrounds suggests that this complex forms early in the maturation process. With respect to the Hyp proteins, it is shown that HypE and HypF1 formed a stable complex both in vivo and in vitro. Furthermore, HypC and HypD functioned as a unit. Together, they were able to interact with HypE to form a range of complexes probably varying in stoichiometry. The HypC/HypD/HypE complexes did not involve HypF1 but appeared to be more stable when HypF1 was also present in the cells. We hypothesize that HypF1 is able to modify some component of the HypC/HypD/HypE complex. Since we have also seen that HypF1 and HypE form a complex, it is likely that HypF1 modifies HypE. On the basis of these results, we propose a complete catalytic cycle for HypE. First, it is modified by HypF1, and then it can form a complex with HypC/HypD. This activated HypE/HypC/HypD complex could then decompose by donating active site components to the immature hydrogenase and regenerate unmodified HypE.  相似文献   
32.
The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.  相似文献   
33.
In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.  相似文献   
34.
In plant secondary metabolism, beta-acetal ester-dependent acyltransferases, such as the 1-O-sinapoyl-beta-glucose:l-malate sinapoyltransferase (SMT; EC 2.3.1.92), are homologous to serine carboxypeptidases. Mutant analyses and modeling of Arabidopsis SMT (AtSMT) have predicted amino acid residues involved in substrate recognition and catalysis, confirming the main functional elements conserved within the serine carboxypeptidase protein family. However, the functional shift from hydrolytic to acyltransferase activity and structure-function relationship of AtSMT remain obscure. To address these questions, a heterologous expression system for AtSMT has been developed that relies on Saccharomyces cerevisiae and an episomal leu2-d vector. Codon usage adaptation of AtSMT cDNA raised the produced SMT activity by a factor of approximately three. N-terminal fusion to the leader peptide from yeast proteinase A and transfer of this expression cassette to a high copy vector led to further increase in SMT expression by factors of 12 and 42, respectively. Finally, upscaling the biomass production by fermenter cultivation lead to another 90-fold increase, resulting in an overall 3900-fold activity compared to the AtSMT cDNA of plant origin. Detailed kinetic analyses of the recombinant protein indicated a random sequential bi-bi mechanism for the SMT-catalyzed transacylation, in contrast to a double displacement (ping-pong) mechanism, characteristic of serine carboxypeptidases.  相似文献   
35.
The neurodegenerative disorder spinocerebellar ataxia 12 (SCA12) is caused by CAG repeat expansion in the non-coding region of the PPP2R2B gene. PPP2R2B encodes Bbeta1 and Bbeta2, alternatively spliced and neuron-specific regulatory subunits of the protein phosphatase 2A (PP2A) holoenzyme. We show here that in PC12 cells and hippocampal neurons, cell stressors induced a rapid translocation of PP2A/Bbeta2 to mitochondria to promote apoptosis. Conversely, silencing of PP2A/Bbeta2 protected hippocampal neurons against free radical-mediated, excitotoxic, and ischemic insults. Evidence is accumulating that the mitochondrial fission/fusion equilibrium is an important determinant of cell survival. Accordingly, we found that Bbeta2 expression induces mitochondrial fragmentation, whereas Bbeta2 silencing or inhibition resulted in mitochondrial elongation. Based on epistasis experiments involving Bcl2 and core components of the mitochondrial fission machinery (Fis1 and dynamin-related protein 1), mitochondrial fragmentation occurs upstream of apoptosis and is both necessary and sufficient for hippocampal neuron death. Our data provide the first example of a proapoptotic phosphatase that predisposes to neuronal death by promoting mitochondrial division and point to a possible imbalance of the mitochondrial morphogenetic equilibrium in the pathogenesis of SCA12.  相似文献   
36.
Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae   总被引:1,自引:0,他引:1  
The seeds of most members of the Brassicaceae accumulate high amounts of sinapine (sinapoylcholine) that is rapidly hydrolyzed during early stages of seed germination. One of three isoforms of sinapine esterase activity (BnSCE3) has been isolated from Brassica napus seedlings and subjected to trypsin digestion and spectrometric sequencing. The peptide sequences were used to isolate BnSCE3 cDNA, which was shown to contain an open reading frame of 1170 bp encoding a protein of 389 amino acids, including a leader peptide of 25 amino acids. Sequence comparison identified the protein as the recently cloned BnLIP2, i.e. a GDSL lipase-like protein, which displays high sequence identity to a large number of corresponding plant proteins, including four related Arabidopsis lipases. The enzymes belong to the SGNH protein family, which use a catalytic triad of Ser-Asp-His, with serine as the nucleophile of the GDSL motif. The corresponding B. napus and Arabidopsis genes were heterologously expressed in Nicotiana benthamiana leaves and proved to confer sinapine esterase activity. In addition to sinapine esterase activity, the native B. napus protein (BnSCE3/BnLIP2) showed broad substrate specificity towards various other choline esters, including phosphatidylcholine. This exceptionally broad substrate specificity, which is common to a large number of other GDSL lipases in plants, hampers their functional analysis. However, the data presented here indicate a role for the GDSL lipase-like BnSCE3/BnLIP2 as a sinapine esterase in members of the Brassicaceae, catalyzing hydrolysis of sinapine during seed germination, leading, via 1- O -sinapoyl-β-glucose, to sinapoyl- l -malate in the seedlings.  相似文献   
37.
It is anticipated that a lowering of the water table and reduced soil moisture levels in peatlands may increase peat decomposition rates and consequently affect nutrient availability. However, it is not clear if patterns will be consistent across different peatland types or within peatlands given the natural range of ecohydrological conditions within these systems. We examined the effect of persistent drought on peatland nutrient dynamics by quantifying the effects of an experimentally lowered water table position (drained for a 10-year period) on peat KCl-extractable total inorganic nitrogen (ext-TIN), peat KCl-extractable nitrate (ext-NO3 ?), and water-extractable ortho-phosphorus (ext-PO4 3?) concentrations and net phosphorus (P) and nitrogen (N) mineralization and nitrification rates at natural (control) and drained microforms (hummocks, lawns) of a bog and poor fen near Québec City, Canada. Drainage (water table drawdown) decreased net nitrification rates across the landscape and increased ext-NO3 ? concentrations, but did not affect net N and P mineralization rates or ext-TIN and ext-PO4 3? concentrations. We suggest that the thick capillary fringe at the drained peatland likely maintained sufficient moisture above the water table to limit the effects of drainage on microbial activity, and a 20 cm lowering of the water table does not appear to have been sufficient to create a clear difference in nutrient dynamics in this peatland landscape. We found some evidence of differences in nutrient concentrations with microforms, where concentrations were greater in lawn than hummock microforms at control sites indicating some translocation of nutrients. In general, the same microtopographic differences were not observed at drained sites. The general spatial patterns in nutrient concentrations did not reflect net mineralization/immobilization rates measured at our control or drained peatlands. Rather, the spatial patterns in nutrient availability may be regulated by differences in vegetation (mainly Sphagnum moss) cover between control and drained sites and possibly differences in hydrologic connection between microforms. Our results suggest that microform distribution and composition within a peatland may be important for determining how peatland nutrient dynamics will respond to water table drawdown in northern peatlands, as some evidence of microtopographic differences in nutrient dynamics was found.  相似文献   
38.
The occurrence of 1-sinapoylglucose: choline sinapoyltransferase (SCT) in seeds of various members of the Brassicaceae is reported. Within the species and cultivars investigated, a positive correlation was found between extractable levels of enzyme activity and the degree of sinapine accumulation. High enzymatic activities were found in seeds from Brassica, Raphanus and Sinapis, known for their high sinapine content.  相似文献   
39.
Tissue-specific accumulation of phenylpropanoids was studied in mycorrhizas of the conifers, silver fir (Abies alba Mill.), Norway spruce [Picea abies (L.) Karst.], white pine (Pinus strobus L.), Scots pine (Pinus silvestris L.), and Douglas fir [Pseudotsuga menziesii (Mirbel) Franco], using high-performance liquid chromatography and histochemical methods. The compounds identified were soluble flavanols (catechin and epicatechin), proanthocyanidins (mainly dimeric catechins and/or epicatechins), stilbene glucosides (astringin and isorhapontin), one dihydroflavonol glucoside (taxifolin 3′-O-glucopyranoside), and a hydroxycinnamate derivative (unknown ferulate conjugate). In addition, a cell wall-bound hydroxycinnamate (ferulate) and a hydroxybenzaldehyde (vanillin) were analysed. Colonisation of the root by the fungal symbiont correlated with the distribution pattern of the above phenylpropanoids in mycorrhizas suggesting that these compounds play an essential role in restricting fungal growth. The levels of flavanols and cell wall-bound ferulate within the cortex were high in the apical part and decreased to the proximal side of the mycorrhizas. In both Douglas fir and silver fir, which allowed separation of inner and outer parts of the cortical tissues, a characteristic transversal distribution of these compounds was found: high levels in the inner non-colonised part of the cortex and low levels in the outer part where the Hartig net is formed. Restriction of fungal growth to the outer cortex may also be achieved by characteristic cell wall thickening of the inner cortex which exhibited flavanolic wall infusions in Douglas fir mycorrhizas. Long and short roots of conifers from natural stands showed similar distribution patterns of phenylpropanoids and cell wall thickening compared to the respective mycorrhizas. These results are discussed with respect to co-evolutionary adaptation of both symbiotic partners regarding root structure (anatomy) and root chemistry. Received: 25 May 1998 / Accepted: 6 November 1998  相似文献   
40.
Tobacco (Nicotiana tabacum L.) plants were grown with and without the arbuscular mycorrhizal fungus, Glomus intraradices Schenk & Smith. High-performance liquid chromatographic analyses of methanolic extracts from mycorrhizal and non-mycorrhizal tobacco roots revealed marked fungus-induced changes in the patterns of UV-detectable products. The UV spectra of these products, obtained from an HPLC photodiode array detector, indicated the presence of several blumenol derivatives. The most predominant compound among these derivatives was spectroscopically identified as 13-hydroxyblumenol C 9-O-gentiobioside (“nicoblumin”), i.e. the 9-O-(6′-O-β-glucopyranosyl)-β-glucopyranoside of 13-hydroxy-6-(3-hydroxybutyl)-1,1,5-trimethyl-4-cyclohexen-3-one, a new natural product. This is the first report on the identification of blumenol derivatives in mycorrhizal roots of a non-gramineous plant. Received: 28 August 1998 / Accepted: 26 October 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号