首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   22篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   17篇
  2010年   16篇
  2009年   9篇
  2008年   14篇
  2007年   11篇
  2006年   13篇
  2005年   20篇
  2004年   7篇
  2003年   12篇
  2002年   14篇
  2001年   5篇
  2000年   13篇
  1999年   13篇
  1998年   1篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1993年   1篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   5篇
  1965年   3篇
排序方式: 共有291条查询结果,搜索用时 328 毫秒
21.
Here we report the production of marker-free transgenic plants expressing phenolic compounds with high pharmacological value. Our strategy consisted in simultaneous delivery of lox-target and cre-containing constructs into the plant genome by cotransformation. In the Cre-vector, the cre recombinase gene was controlled by a seed-specific napin promoter. In the lox-target construct the selectable bar gene was placed between two lox sites in direct orientation, while a napin promoter driven vstI gene was inserted outside of the lox sites. Upon seed-specific cre induction the bar expression cassette was excised from the tobacco genome. Genetic and molecular analysis of T1 progeny plants indicated DNA excision in all 10 transgenic lines tested. RP-HPLC analysis demonstrated that the expression of the vstI gene resulted in accumulation of trans-resveratrol and its glycosylated derivative piceid in seeds of all marker free lines. These findings indicate that the seed-specific marker gene excision did not interfere with the expression of the gene of interest. Our data demonstrated the feasi of a developmentally controlled cre gene to mediate site-specific excision in tobacco very efficiently.  相似文献   
22.
In oilseed rape (Brassica napus), the glucosyltransferase UGT84A9 catalyzes the formation of 1-O-sinapoyl-β-glucose, which feeds as acyl donor into a broad range of accumulating sinapate esters, including the major antinutritive seed component sinapoylcholine (sinapine). Since down-regulation of UGT84A9 was highly efficient in decreasing the sinapate ester content, the genes encoding this enzyme were considered as potential targets for molecular breeding of low sinapine oilseed rape. B. napus harbors two distinguishable sequence types of the UGT84A9 gene designated as UGT84A9-1 and UGT84A9-2. UGT84A9-1 is the predominantly expressed variant, which is significantly up-regulated during the seed filling phase, when sinapate ester biosynthesis exhibits strongest activity. In the allotetraploid genome of B. napus, UGT84A9-1 is represented by two loci, one derived from the Brassica C-genome (UGT84A9a) and one from the Brassica A-genome (UGT84A9b). Likewise, for UGT84A9-2 two loci were identified in B. napus originating from both diploid ancestor genomes (UGT84A9c, Brassica C-genome; UGT84A9d, Brassica A-genome). The distinct UGT84A9 loci were genetically mapped to linkage groups N15 (UGT84A9a), N05 (UGT84A9b), N11 (UGT84A9c) and N01 (UGT84A9d). All four UGT84A9 genomic loci from B. napus display a remarkably low micro-collinearity with the homologous genomic region of Arabidopsis thaliana chromosome III, but exhibit a high density of transposon-derived sequence elements. Expression patterns indicate that the orthologous genes UGT84A9a and UGT84A9b should be considered for mutagenesis inactivation to introduce the low sinapine trait into oilseed rape.  相似文献   
23.
Jasmonates in arbuscular mycorrhizal interactions   总被引:2,自引:0,他引:2  
The mutualistic interaction between plants and arbuscular mycorrhizal (AM) fungi is believed to be regulated from the plant side among other signals by the action of phytohormones. Evidences for this are based mainly on application experiments and determination of phytohormone levels in AM roots by comparison to non-mycorrhizal roots. In case of jasmonates, additional proof is given by reverse genetic approaches, which led to first insights into their putative role in the establishment and functioning of the symbiosis. This review summarizes the current data about phytohormone action in AM roots and the role of jasmonates in particular.  相似文献   
24.
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alcc::wINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to beta-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC::ppa plants with defective phloem loading and tobacco pyk10::InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.  相似文献   
25.
Recent genome-wide association studies reveal that the FAM13A gene is associated with human lung function and a variety of lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The biological functions of Fam13a, however, have not been studied. In an effort to identify novel substrates of B56-containing PP2As, we found that B56-containing PP2As and Akt act antagonistically to control reversible phosphorylation of Fam13a on Ser-322. We show that Ser-322 phosphorylation acts as a molecular switch to control the subcellular distribution of Fam13a. Fam13a shuttles between the nucleus and cytoplasm. When Ser-322 is phosphorylated by Akt, the binding between Fam13a and 14-3-3 is enhanced, leading to cytoplasmic sequestration of Fam13a. B56-containing PP2As dephosphorylate phospho–Ser-322 and promote nuclear localization of Fam13a. We generated Fam13a-knockout mice. Fam13a-mutant mice are viable and healthy, indicating that Fam13a is dispensable for embryonic development and physiological functions in adult animals. Intriguingly, Fam13a has the ability to activate the Wnt pathway. Although Wnt signaling remains largely normal in Fam13a-knockout lungs, depletion of Fam13a in human lung cancer cells causes an obvious reduction in Wnt signaling activity. Our work provides important clues to elucidating the mechanism by which Fam13a may contribute to human lung diseases.  相似文献   
26.
We report the discovery of piperazine urea based compound 1, a potent, selective, orally bioavailable melanocortin subtype-4 receptor partial agonist. Compound 1 shows anti-obesity efficacy without potentiating erectile activity in the rodent models.  相似文献   
27.
Mutations in PTEN-induced kinase 1 (PINK1) are associated with a familial syndrome related to Parkinson's disease (PD). We previously reported that stable neuroblastoma SH-SY5Y cell lines with reduced expression of endogenous PINK1 exhibit mitochondrial fragmentation, increased mitochondria-derived superoxide, induction of compensatory macroautophagy/mitophagy and a low level of ongoing cell death. In this study, we investigated the ability of protein kinase A (PKA) to confer protection in this model, focusing on its subcellular targeting. Either: (1) treatment with pharmacological PKA activators; (2) transient expression of a constitutively active form of mitochondria-targeted PKA; or (3) transient expression of wild-type A kinase anchoring protein 1 (AKAP1), a scaffold that targets endogenous PKA to mitochondria, reversed each of the phenotypes attributed to loss of PINK1 in SH-SY5Y cells, and rescued parameters of mitochondrial respiratory dysfunction. Mitochondrial and lysosomal changes in primary cortical neurons derived from PINK1 knockout mice or subjected to PINK1 RNAi were also reversed by the activation of PKA. PKA phosphorylates the rat dynamin-related protein 1 isoform 1 (Drp1) at serine 656 (homologous to human serine 637), inhibiting its pro-fission function. Mimicking phosphorylation of Drp1 recapitulated many of the protective effects of AKAP1/PKA. These data indicate that redirecting endogenous PKA to mitochondria can compensate for deficiencies in PINK1 function, highlighting the importance of compartmentalized signaling networks in mitochondrial quality control.  相似文献   
28.

Background

The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased.

Methodology/Principal Findings

We demonstrate a novel approach to follow the kinetics of acetylcholine receptor lifetimes upon pulse labeling of mouse muscles with 125I-α-bungarotoxin in vivo. In contrast to previous assays where residual activity was measured ex vivo, in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently.

Conclusions/Significance

A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms.  相似文献   
29.
30.
Heterotrimeric serine/threonine protein phosphatase 2A (PP2A) consists of scaffolding (A), catalytic (C), and variable (B, B', and B') subunits. Variable subunits dictate subcellular localization and substrate specificity of the PP2A holoenzyme. The Bbeta regulatory subunit gene is mutated in spinocerebellar ataxia type 12, and one of its splice variants, Bbeta2, targets PP2A to mitochondria to promote apoptosis in PC12 cells (Dagda, R. K., Zaucha, J. A., Wadzinski, B. E., and Strack, S. (2003) J. Biol. Chem. 278, 24976-24985). Here, we report that Bbeta2 is localized to the outer mitochondrial membrane by a novel mechanism, combining a cryptic mitochondrial import signal with a structural arrest domain. Scanning mutagenesis demonstrates that basic and hydrophobic residues mediate mitochondrial association and the proapoptotic activity of Bbeta2. When fused to green fluorescent protein, the N terminus of Bbeta2 acts as a cleavable mitochondrial import signal. Surprisingly, full-length Bbeta2 is not detectably cleaved and is retained at the outer mitochondrial membrane, even though it interacts with the TOM22 import receptor, as shown by luciferase complementation in intact cells. Mutations that open the C-terminal beta-propeller of Bbeta2 facilitate mitochondrial import, indicating that this rigid fold acts as a stop-transfer domain by resisting the partial unfolding step prerequisite for matrix translocation. Because hybrids of prototypical import and beta-propeller domains recapitulate this behavior, we predict the existence of other similarly localized proteins and a selection against highly stable protein folds in the mitochondrial matrix. This unfolding-resistant targeting to the mitochondrial translocase is necessary but not sufficient for the proapoptotic activity of Bbeta2, which also requires association with the rest of the PP2A holoenzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号