首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   8篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   8篇
  2012年   11篇
  2011年   8篇
  2010年   6篇
  2009年   10篇
  2008年   11篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1983年   3篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有180条查询结果,搜索用时 609 毫秒
41.

Background  

SH3 domains are small protein modules of 60–85 amino acids that bind to short proline-rich sequences with moderate-to-low affinity and specificity. Interactions with SH3 domains play a crucial role in regulation of many cellular processes (some are related to cancer and AIDS) and have thus been interesting targets in drug design. The decapeptide APSYSPPPPP (p41) binds with relatively high affinity to the SH3 domain of the Abl tyrosine kinase (Abl-SH3), while it has a 100 times lower affinity for the α-spectrin SH3 domain (Spc-SH3).  相似文献   
42.
43.
In the literature the enzymatic kinetic resolution of a suspension of a solid substrate has largely been treated as a conventional kinetic resolution of a fully dissolved substrate. In this paper it is shown that this type of kinetic resolution is different in several important aspects. Quantitative models are developed for two types of such suspension processes. These models are used to compare the merits of these processes with the conventional kinetic resolution process where fully dissolved substrate is used. In the suspension processes the liquid phase concentration of substrate enantiomer that should be converted can be kept close to the maximum value, i.e., the solubility, when process conditions are properly chosen, whereas in a conventional process this concentration gradually decreases. Calculations show that this leads to a productivity that is about 6-fold higher in the suspension processes. Also, for enzymes with a low enantioselectivity, a severalfold increase in yield of remaining enantiopure substrate is predicted compared to the conventional kinetic resolution of dissolved enantiomers. Other potential advantages of using suspension reactions are that the initial substrate concentration may be higher (up to 25% (w/w)) and that the desired remaining substrate may be recovered by simply filtering off the solid crystals. Experimental evidence that these merits can be exploited is only partly given, using the few available examples from the literature.  相似文献   
44.
The production of fine chemicals by biotransformations   总被引:26,自引:0,他引:26  
Today, biocatalysis is a standard technology for the production of chemicals. An analysis of 134 industrial biotransformations reveals that hydrolases (44%) and redox biocatalysts (30%) are the most prominent categories. Most products are chiral (89%) and are used as fine chemicals. In the chemical industry, successful product developments involve on average a yield of 78%, a volumetric productivity of 15.5 g/(L.h) and a final product concentration of 108 g/L. By contrast, the pharmaceutical industry focuses on time-to-market. The implications of this for future research and development on biocatalysis are discussed.  相似文献   
45.
The liquorice tribe Glycyrrhizeae is a leguminous herbaceous group of plants comprised of the genera Glycyrrhiza and Glycyrrhizopsis. Some Glycyrrhiza taxa contain glycyrrhizin, a pharmacologically significant sweet substance that also has applications in crafting industrial materials. Here, we utilized an expanded taxon sampling of Glycyrrhizeae to reconstruct the phylogenetic relationships in the tribe based on genome skimming data, including whole chloroplast genomes, nuclear ribosomal DNA, and low-copy nuclear DNA. We also launched machine learning analysis (MLA) for one species pair with controversial taxonomic boundary. The integrated results indicated Glycyrrhizopsis should be split from Glycyrrhiza, while the former genus Meristotropis should be treated as part of Glycyrrhiza. Glycyrrhizopsis includes two species, Glycyrrhizopsis asymmetrica and Glycyrrhizopsis flavescens, and we recognize 13 species in Glycyrrhiza: Glycyrrhiza acanthocarpa, Glycyrrhiza astragalina, Glycyrrhiza bucharica, Glycyrrhiza echinata, Glycyrrhiza foetida, Glycyrrhiza glabra, Glycyrrhiza gontscharovii, Glycyrrhiza lepidota, Glycyrrhiza macedonica, Glycyrrhiza pallidiflora, Glycyrrhiza squamulosa, Glycyrrhiza triphylla, and Glycyrrhiza yunnanensis. We propose a broader G. glabra that includes former Glycyrrhiza aspera, G. glabra s.s., Glycyrrhiza inflata, and Glycyrrhiza uralensis, and represents the glycyrrhizin-contained medicinal group. Our ancestral state inferences show the ancestor of Glycyrrhiza lacked glycyrrhizin, and the presence of glycyrrhizin evolved twice within Glycyrrhiza during the last one million years. Our integrative phylogenomics-MLA study not only provides new insights into long-standing taxonomic controversies of Glycyrrhizeae, but also represents a useful approach for future taxonomic studies on other plant taxa.  相似文献   
46.
In vitro aged sheep erythrocytes and sheep erythrocyte ghosts spontaneously release vesicles that consist of long protrusions affixed to flattened headlike structures. The intramembranous particles seen on the protoplasmic face of freeze fracture electron micrographs of vesicle protrusions are arranged in paired particle rows. On the equivalent fracture face of headlike structures, the particle density is low; if particles are present, they are clustered along the rim of the flattened headlike structure and at the junction with the protrusion. The released vesicles are depleted of the intramembranous particles seen on the exoplasmic face of ghost but retain almost exclusively particles of the protoplasmic face. Correspondingly, the exoplasmic face of ghosts that have released vesicles reveals a 28 percent higher density of intramembranous particles than that of fresh ghosts. Purified vesicles are depleted of spectrin but retain integral membrane proteins, with one of an apparent mol wt of 160,000 accounting for nearly 50 percent of the total protein (Lutz, H.U.,R. Barber, and R.F. McGuire. 1976. J. Biol. Chem. 251:3500-3510). When vesicles are modified with the cleavable cross-linking reagent [(35)S]dithiobis (succinimidyl propionate)at 0 degrees C, the 160,000 mol wt protein is rapidly converted to disulfide-linked dimers and higher oligomers. Exposure of intact ghosts to the reagent in the same way fails to yield equivalent polymers. A comparison of the morphological and biochemical aspects of ghosts and vesicles suggest that a marked rearrangement of membrane proteins accompanies the supramolecular redistribution of intramembranous particles during spontaneous vesiculation. The results also suggest that the paired particles of the protoplasmic face of vesicle protrusions are arranged in paired helices and contain the 160,000 mol wt protein as dimers.  相似文献   
47.
We report on experiments pertaining to solution properties of the (S)-hydroxynitrile lyase from Hevea brasiliensis (HbHNL). Small angle X-ray scattering unequivocally established the enzyme to occur in solution as a dimer, presumably of the same structure as in the crystal. The acid induced, irreversible deactivation of HbHNL was examined by electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD) and by measuring the enzyme activity. The deactivation is paralleled by an unfolding of the enzyme. ESI-MS of this 30000 Da per monomer heavy protein demonstrated that unfolding took place in several stages which are paralleled by a decrease in enzyme activity. Unfolding can also be observed by CD spectroscopy, and there is a clear correlation between enzyme activity and unfolding as detected by ESI-MS and CD.  相似文献   
48.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
49.
In order to obtain a homochiral product from a racemic substrate, different strategies can be followed using a moderately enantioselective enzymatic catalyst. Two new strategies are presented, involving the simultaneous use of two enzymes, parallel or consecutive. In the parallel system, the substrate enantiomer yielding the unwanted product enantiomer is enantioselectively converted by the second enzyme. In the consecutive system, the substrate enantiomer yielding the desired product enantiomer is itself the preferred product of another enantioselective enzymatic reaction.

For irreversible pseudo-first order enzyme kinetics, a relationship was found which describes the dependency of the yield and enantiomeric excess for these systems on the E-values of the separate enzymes and on the ratio of their concentrations. For Michaelis-Menten kinetics, these relationships usually give good approximations.

According to these calculations, the yield and enantiomeric excess obtainable with the concepts of combined enzymes exceed significantly those obtainable with the separate enzymes, and also those obtainable with the strategy of product recirculation.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号