全文获取类型
收费全文 | 106篇 |
免费 | 6篇 |
专业分类
112篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 1篇 |
2017年 | 5篇 |
2016年 | 5篇 |
2015年 | 4篇 |
2014年 | 6篇 |
2013年 | 9篇 |
2012年 | 6篇 |
2011年 | 5篇 |
2010年 | 6篇 |
2009年 | 7篇 |
2008年 | 9篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 9篇 |
1996年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1973年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有112条查询结果,搜索用时 15 毫秒
91.
Ivan Hiltpold Mariane Baroni Stefan Toepfer Ulrich Kuhlmann Ted CJ Turlings 《Plant signaling & behavior》2010,5(11):1450-1452
We recently showed that the efficacy of an entomopathogenic nematode (EPN) as a biological control agent against a root pest could be enhanced through artificial selection. The EPN Heterorhabditis bacteriophora was selected for higher responsiveness towards (E)-β-caryophyllene (EβC), a sesquiterpene that is emitted by maize roots in response to feeding damage by the western corn rootworm (WCR). EβC is normally only weakly attractive to H. bacteriophora, which is one of the most infectious nematodes against WCR. By selecting H. bacteriophora to move more readily along a EβC gradient we obtained a strain that was almost twice more efficient in controlling WCR population in fields planted with an EβC-producing maize variety. However, artificial selection for one trait may come at a cost for other important traits such as infectiousness, establishment and/or persistence in the field. Indeed, infectiousness was slightly but significantly reduced in the selected strain. Yet, this apparent cost was largely compensated for by the higher responsiveness to the root signal. Here we show that the selection process had no negative effect on establishment and persistence of field-released EPN. This knowledge, combined with the previously reported results, attest to the feasibility of manipulating key traits to improve the efficacy of beneficial organisms.Key words: entomopathogenic nematodes, tritrophic interactions, artificial selection, biological control, Diabrotica virgifera virgifera, western corn rootworm, persistence, establishmentDiabrotica virgifera virgifera LeConte (Chrysomelidae: Coleptera, western corn rootworm, WCR) is a major well established pest of maize in the American Corn Belt and more recently also in Europe.1 The larval stages of this beetle can cause significant damages to maize roots, leading to reduction of plant growth, deficiencies in nutrient and water uptake, lodging, increased susceptibility to water stress and reduced grain yield.2 This combination of factors result in an estimated loss of one billion US dollars per year in the USA.3 The pest has been introduced in Europe in the early ''90s,4 and it is expected that at full establishment the costs resulting from WCR damages will be half a billion Euros.5 Several strategies are available to control this soil-dwelling pest, including crop rotation, pesticides and transgenic Bt maize, but WCR can readily evolve resistance to each of these methods.6–8 This is why efforts have been invested in biological control alternatives.Entomopathogenic nematodes (EPN) show great promise as biological agents against WCR.9 Root-produced volatiles appear to play an important role in the recruitment of EPN10–13 and one such volatile, (E)-β-caryophyllene (EβC), has recently been identified for maize roots14 and was found to be an ideal below-ground alarm signal.15 EPN efficacy can be improved by exploiting the ability of WCR-damaged maize roots to emit the attractant.14 Further studies have shown the importance of choosing the right species of nematodes.16 Among the EPN species tested against WCR, Heterorhabditis bacteriophora has proven to be one of the most virulent nematodes,17 but it barely responds to EβC.16 We therefore recently selected H. bacteriophora for higher responsiveness to EβC.18 In the field, the selected strain exhibited better abilities to control WCR larvae, but logically only in maize plots with plants that emitted EβC. However, previous studies have shown that enhancing beneficial traits through selective breeding can incur costs and negatively alter other traits in the selected strain.19 For EPN such trade-offs after selective breeding have also been reported, for instance resulting in reduced storage stability20 or a lower capacity to kill their hosts.21 After selection for enhanced responsiveness to EβC response, we observed a small, but significant negative effect on infectiousness of the selected strains. However, this drawback was readily outweighed by the improved ability to locate hosts in the field.18Not only infectiousness is a crucial trait for the successful use of EPN in biological control: establishment and persistence in the field are of decisive importance as well. These traits vary with EPN species and are determined by biotic factors such as pathogens and predators22 or abiotic factors such as soil type,23 humidity,24 temperature25 or pH.24 But the main factor that is thought to determine long-term persistence in the field is the presence of available host insects.25 In field trials in Hungary, three EPN species, H. bacteriophora, H. megidis and Steinernema feltiae, were released to test their control potential against WCR. They all persisted at least as long WCR were present in soil, during the same year.26 There was no significant difference between the three species in the establishment or persistence. Yet, independent of timing of application, EPN populations dramatically decreased within five months after application. The authors26 propose that this short persistence is due to the absence of suitable alternative hosts in intensively cultivated crop fields in Europe.To determine if the selection for enhanced responsiveness to EβC went at a cost for establishment and persistence we compared these key traits for the original and the EβC-selected stains. Using a metal auger (2 cm diam.; 20 cm high), 310 soil samples were dug out either two days (establishment) or 28 days (persistence) after EPN application. The soil was placed in plastic boxes (4.5 cm diam.; 60 cm high) and as previously described26 Tenebrio molitor (Coleoptera: Tenebrionidae) larva was placed as bait in the boxes. Presence/absence of EPN was evaluated by visually checking T. molitor larvae for EPN infection. Soil samples from areas where no EPN were applied served as controls. No significant differences were found between the original and selected strain of H. bacteriophora strain (factor “strain”), neither in establishment after two days nor in persistence after 28 days (factor “time”) (Fig. 1, two-way ANOVA, Ftime1,35 = 2.937, p = 0.097; Fstrain2,35 = 10.359, p < 0.001; Ftime × strain2,35 = 1.202, p = 0.315, statistical differences within factors were calculated using a Bonferoni post-hoc test). Hence, the selection of H. bacteriophora for a better response to EβC had no consequence for how the nematodes settled in the experimental fields. Future efforts to improve the effectiveness H. bacteriophora against WCR might also include selection for increased persistence in soil. This would allow lower application rates and could provide growers with an affordable and efficient control strategy against this voracious pest.Open in a separate windowFigure 1Establishment and persistence of the original and a selected strain of H. bacteriophora. The selected strain (squares) established and persisted as well as the original strain (diamonds). The triangles represent control samples from plots where no nematodes were released. Establishment (after two days) and persistence (after 28 days) was equal for both strains. Moreover, the number of soil samples containing EPN after 28 days was not significantly lower than after 2 days, independently of treatment. A few nematodes were detected in the control samples but again no differences over time were detected. Error bars indicate the SEM. Different lower-case letters indicate statistical differences within establishment (after 2 days) or persistence (after 28 days) (p <0.05).So far, manipulation of tritrophic systems in order to improve biological control has been largely theoretical.27–29 We show here that for EPN this approach is realistic and that their responsiveness to root-produced foraging signals can be enhanced without significant costs for other relevant traits. It has also been shown that the emissions of the signals by the plants can be enhanced.30 Combining these strategies opens new perspectives for the development of ecologically sound strategies in pest management. 相似文献
92.
Background
Transferrin binding protein B (tbpB), an outer membrane lipoprotein, is required for the acquisition of iron from human transferrin. Two tbpB families have been documented in Neisseria meningitidis: an isotype I tbpB gene of 1.8 kb and an isotype II tbpB gene of 2.1 kb, the former expressed by meningococci in the disease-associated ST-11 clonal complex and the latter found among meningococci belonging to the hyper-invasive clonal complexes including ST-8, ST-18, ST-32, ST-41/44 as well as N. gonorrhoeae isolates. The origin of the isotype I tbpB gene is unknown, however several features in common with non-pathogenic Neisseria and the ST-11 clonal complex N. meningitidis isolate FAM18 have been documented leading to the hypothesis that the isotype I tbpB gene may also be shared between non-pathogenic Neisseria and ST-11 meningococci. As a result, the diversity of the tbpB gene was investigated in a defined collection of Neisseria species. 相似文献93.
Polymerase chain reaction (PCR) gut analysis was conducted on specimens of the introduced spider Tenuiphantes tenuis collected from dairy pasture in Canterbury, New Zealand. PCR primers were specifically designed to amplify a fragment of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) from Listronotus bonariensis and revealed that this major pasture pest species is consumed in the field by T. tenuis. The field predation rate of L. bonariensis by T. tenuis was estimated from our PCR results together with published data on the degradation of DNA and the density of T. tenuis in Canterbury pastures. We found that T. tenuis is a potentially significant predator of L. bonariensis in New Zealand pastures. 相似文献
94.
Background
The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms. These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner. 相似文献95.
Compacted membrane arrays are formed in the nerve myelin sheath by lowering the water activity (through evaporation or immersion in hypertonic solutions of nonelectrolytes or monovalent salts) or by binding specific cations (Ca(++), La(+++), and tetracaine at concentrations above 5-10 mM). X-ray diffraction observations on intact, hydrated nerves treated to induce compaction provide a control to assess the significance of structural changes seen by freeze-fracture electron microscopy. Compaction inevitably leads to lateral segregation of particles away from the closely packed membrane arrays into contiguous normal, or slightly expanded, period arrays. In the particle-enriched layers, the E fracture face is more particle-dense than the P face, whereas no particles are found on either face in the compacted layers. Morphologically, compaction induced by the all-or-nothing, relatively irreversible action of specific cations cannot be distinguished from compaction to the same extent induced by the graded, reversible effects of nonelectrolytes. Compaction by sodium chloride resembles that by specific- cation binding in that the repeat period is independent of reagent concentration; but, like dehydration by nonelectrolytes, the extent of compaction is reversibly related to reagent concentration. Sodium chloride-compacted myelin can be distinguished morphologically by a lack of the elongated border particles at the boundary between smooth and particle-enriched membrane observed for other compacting treatments. Fracture faces in compacted arrays are not always smooth, but the unusual appearances can be duplicated in purified myelin lipid multilayers subjected to similar treatments, which indicates that the particle-free membrane fracture faces are uninterrupted lipid hydrocarbon layers. Correlation of x-ray diffraction and electron microscopy observations provides a direct basis for identifying the intramembrane particles with transmembrane protein. The transmembrane protein appears to play a significant role in maintaining the normal membrane separation; swelling of the particle-enriched arrays in myelin compacted by tetracaine at low ionic strength provides information about the charge distribution on the transmembrane protein. Swelling of the compacted arrays following irreversible particle segregation shows that the interaction properties of the particle-free membranes are similar to those of pure lipid multilayers. Compaction and the consequent particle segregation in lyelin results from conditions stabilizing close apposition of the lipid bilayers. Particle segregation in areas of close contact between other cell membranes may also be driven by interbilayer attractive forces. 相似文献
96.
97.
Background
Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis. 相似文献98.
In mammals, cytochrome P450 17alpha-hydroxylase/17-20 lyase (CYP17), which is encoded by a single gene, plays a critical role in the production of mineralocorticoids, glucocorticoids and androgens by the adrenal cortex. Two CYP17 isoforms with unique catalytic properties have been identified in the South African Angora goat (Capra hircus), a subspecies that is susceptible to cold stress because of the inability of the adrenal cortex to produce sufficient levels of cortisol. A real-time-based genotyping assay was used in this study to identify the distribution of the two CYP17 alleles in the South African Angora population. These data revealed that the two CYP17 isoforms were not the product of two alleles of the same gene, but two separate CYP17 genes encoding the two unique CYP17 isoforms. This novel finding was subsequently confirmed by quantitative real-time PCR. Goats were divided into three unique genotypes which differed not only in the genes encoding CYP17, but also in copy number. Furthermore, in vivo assays revealed that the identified genotypes differed in their ability to produce cortisol in response to intravenous insulin injection. This study clearly demonstrates the presence of two CYP17 genes in the South African Angora goat, and further implicates CYP17 as the primary cause of the observed hypocortisolism in this subspecies. 相似文献
99.
de Wet BJ Matthew MK Storbeck KH van Zyl WH Prior BA 《Applied microbiology and biotechnology》2008,77(5):975-983
A glycosyl hydrolase family 54 (GH54) α-l-arabinofuranosidase gene (abfA) of Aureobasidium pullulans was amplified by polymerase chain reaction from genomic DNA and a 498-amino-acid open reading frame deduced from the DNA
sequence. Modeling of the highly conserved A. pullulans AbfA protein sequence on the crystal structure of Aspergillus kawachii AkabfB showed that the catalytic amino acid arrangement and overall structure were highly similar including the N-terminal
catalytic and C-terminal arabinose binding domains. The abfA gene was expressed in Saccharomyces cerevisiae, and the heterologous enzyme was purified. The protein was monomeric, migrating at 49 kDa on sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and eluting at 36 kDa upon gel filtration. AbfA showed maximal activity at 55°C and between pH 3.5 and
pH 4. The enzyme had a K
m value for p-nitrophenyl-α-l-arabinofuranoside of 3.7 mM and a V
max of 34.8 μmol min−1 mg protein−1. Arabinose acted as a noncompetitive inhibitor with a K
i of 38.4 mM. The enzyme released arabinose from maize fiber, oat spelt arabinoxylan, and wheat arabinoxylan, but not from
larch wood arabinogalactan or α-1,5-debranched arabinan. AbfA displayed low activity against α-1,5-l-arabino-oligosaccharides. The enzyme acted synergistically with endo-β-1,4-xylanase in the breakdown of wheat arabinoxylan. Binding of AbfA to xylan from several sources confirmed the presence
of a functional carbohydrate-binding module.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
100.
CJ Cooksey 《Biotechnic & histochemistry》2018,93(3):211-219
The long history of eosin Y, eosin B and the methyl and ethyl eosins is recounted as well as their synthesis, the variety of their molecular species and some of the myriad applications of these dyes. Chromatographic techniques are described that reveal the purity or lack of it in commercial samples. Toxicological studies are discussed that suggest that the eosins are virtually non toxic, but efforts to remove them from the environment imply that there may be some risk. 相似文献