首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   40篇
  2022年   6篇
  2021年   5篇
  2019年   4篇
  2018年   5篇
  2017年   10篇
  2016年   11篇
  2015年   11篇
  2014年   13篇
  2013年   18篇
  2012年   27篇
  2011年   38篇
  2010年   20篇
  2009年   14篇
  2008年   23篇
  2007年   18篇
  2006年   24篇
  2005年   21篇
  2004年   21篇
  2003年   23篇
  2002年   28篇
  2001年   18篇
  2000年   20篇
  1999年   25篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   8篇
  1992年   12篇
  1991年   11篇
  1989年   9篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1980年   4篇
  1979年   4篇
  1977年   5篇
  1976年   4篇
  1975年   12篇
  1974年   8篇
  1973年   6篇
  1972年   5篇
  1971年   8篇
  1970年   11篇
  1967年   6篇
  1966年   4篇
排序方式: 共有628条查询结果,搜索用时 15 毫秒
41.
Bone reconstruction can be performed with an autogeneic graft from various donor regions. Osteoconductive and osteoinductive bone substitutes originate from substances of diverse chemical and morphological types and can have a synthetic or a biological derivation. Alongside autogeneic bone transplants and allogenic and xenogeneic bone implants, alloplastic bone replacements of synthetic or semi-synthetic origin are being used for defect reconstruction. In an animal model in rabbits five bone substitutes and one autogeneic graft were surgically incorporated into identical bone defects (10times 10 mm in size) in six anatomically defined regions of the skull. With scintigraphic and histological methods, the metabolic dynamics of the bone is examined as it reacts to the transplantation of autogeneic bone or to implanted bone replacement material. The different autogeneic, xenogeneic and alloplastic bone replacement materials can be differentiated according to the functional quality of the new tissue and the dynamics of the bone conversion thus induced. In the comparison of mineralized, osteoconductive bone subsitutes (TCP, HA, calcium carbonate ceramics) with demineralized, osteoinductive implants (DBM new, DBM old) and autogeneic bone grafts, the bone inducing matrices show the largest quantity of new bone formation, making possible a volume-constant reconstruction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
42.
Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of vascular reactivity and function. Conversion to the corresponding dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolases is thought to be the major pathway of EET metabolism in mammalian vascular cells. However, when human coronary artery endothelial cells (HCEC) were incubated with (3)H-labeled 14,15-EET, chain-shortened epoxy fatty acids, rather than DHET, were the most abundant metabolites. After 4 h of incubation, 23% of the total radioactivity remaining in the medium was converted to 10,11-epoxy-hexadecadienoic acid (16:2), a product formed from 14,15-EET by two cycles of beta-oxidation, whereas only 15% was present as 14,15-DHET. Although abundantly present in the medium, 10,11-epoxy-16:2 was not detected in the cell lipids. Exogenously applied (3)H-labeled 10,11-epoxy-16:2 was neither metabolized nor retained in the cells, suggesting that 10,11-epoxy-16:2 is a major product of 14,15-EET metabolism in HCEC. 10,11-Epoxy-16:2 produced potent dilation in coronary microvessels. 10,11-Epoxy-16:2 also potently inhibited tumor necrosis factor-alpha-induced production of IL-8, a proinflammatory cytokine, by HCEC. These findings implicate beta-oxidation as a major pathway of 14,15-EET metabolism in HCEC and provide the first evidence that EET-derived chain-shortened epoxy fatty acids are biologically active.  相似文献   
43.
To investigate the role of ERK signaling in human skin responses to wounding, organ cultures of human skin were maintained for 0.5-24 h in the presence of various inhibitors, followed by measurement of ERK phosphorylation or mRNA levels. The MEK inhibitor PD98059 produced near-complete (97-98%) inhibition of ERK phosphorylation, whereas inhibition of c-Fos, c-Jun, HB-EGF, AR, and VEGF mRNA by this compound was incomplete (41-65%). PD98059 was significantly more effective than either PD158780 or BB2516 as an inhibitor of ERK phosphorylation and of the rapid rise in c-Fos and c-Jun mRNA expression. In contrast, all three compounds inhibited the more delayed rise in HB-EGF mRNA to the same extent. Exogenous epidermal growth factor abrogated the inhibition of ERK phosphorylation caused by BB2516. These data indicate that one or more metalloproteinases activate ErbB signaling in skin organ culture, that ErbB signaling plays an important but not exclusive role in the activation of ERK, and that non-ERK pathways contribute to gene expression in this system. Because metalloproteinase-mediated cleavage of the HB-EGF transmembrane precursor is known to be ERK-dependent, our data suggest that ERK activation resulting from initial trauma leads to metalloproteinase-mediated cleavage of HB-EGF, thereby triggering the ErbB signaling cascade.  相似文献   
44.
We demonstrate that the site-specific integrase encoded by phage TP901-1 of Lactococcus lactis subsp. cremoris has potential as a tool for engineering mammalian genomes. We constructed vectors that express this integrase in Escherichia coli and in mammalian cells and developed a simple plasmid assay to measure the frequency of intramolecular integration mediated by the integrase. We used the assay to document that the integrase functions efficiently in E. coli and determined that for complete reaction in E. coli, the minimal sizes of attB and attP are 31 and 50 bp, respectively. We carried out partial purification of TP901-1 integrase protein and demonstrated its functional activity in vitro in the absence of added cofactors, characterizing the time course and temperature optimum of the reaction. Finally, we showed that when expressed in human cells, the TP901-1 integrase carries out efficient intramolecular integration on a transfected plasmid substrate in the human cell environment. The TP901-1 phage integrase thus represents a new reagent for manipulating DNA in living mammalian cells.  相似文献   
45.
With the recent introduction of neuraminidase (NA) inhibitors into clinical practice for the treatment of influenza virus infections, considerable attention has been focused on the potential for resistance development and cross-resistance between different agents from this class. A-315675 is a novel influenza virus NA inhibitor that has potent enzyme activity and is highly active in cell culture against a variety of strains of influenza A and B viruses. To further assess the therapeutic potential of this compound, in vitro resistance studies have been conducted and a comparative assessment has been made relative to oseltamivir carboxylate. The development of viral resistance to A-315675 was studied by in vitro serial passage of influenza A/N9 virus strains grown in MDCK cells in the presence of increasing concentrations of A-315675. Parallel passaging experiments were conducted with oseltamivir carboxylate, the active form of a currently marketed oral agent for the treatment of influenza virus infections. Passage experiments with A-315675 identified a variant at passage 8 that was 60-fold less susceptible to the compound. Sequencing of the viral population identified an E119D mutation in the NA gene, but no mutations were observed in the hemagglutinin (HA) gene. However, by passage 10 (2.56 microM A-315675), two mutations (R233K, S339P) in the HA gene appeared in addition to the E119D mutation in the NA gene, resulting in a 310-fold-lower susceptibility to A-315675. Further passaging at higher drug concentrations had no effect on the generation of further NA or HA mutations (20.5 microM A-315675). This P15 virus displayed 355-fold-lower susceptibility to A-315675 and >175-fold-lower susceptibility to zanamivir than did wild-type virus, but it retained a high degree of susceptibility to oseltamivir carboxylate. By comparison, virus variants recovered from passaging against oseltamivir carboxylate (passage 14) harbored an E119V mutation and displayed a 6,000-fold-lower susceptibility to oseltamivir carboxylate and a 175-fold-lower susceptibility to zanamivir than did wild-type virus. Interestingly, this mutant still retained susceptibility to A-315675 (42-fold loss). This suggests that cross-resistance between A-315675- and oseltamivir carboxylate-selected variants in vitro is minimal.  相似文献   
46.
47.
Hypophosphatasia is a rare autosomal recessive inborn error of metabolism characterized by a defective bone mineralisation and deficiency of serum and tissue liver/bone/kidney alkaline phosphatase activity. We report the characterisation of tissue-nonspecific alkaline phosphatase (TNSALP) gene mutation in a patient affected by infantile hypophosphatasia. This boy was the first child of non affected, non related parents. At 1 month of age he presented with palsy of the left upper limb with hypotonia. Length was - 2SD. The anterior fontanel was large. There was a markedly decreased ossification of all bones. All limbs were shortened. Ultrasonographic examination of the kidneys showed nephrocalcinosis. Level of alkaline phosphatases was decreased in the child as well as in the parents. Bone density was decreased. At 2 years of age development was delayed. Weight was - 3,5 SD and OFC - 3SD. The child had craniosynostosis. Molecular studies showed 2 missense mutations, both in exon 6 of the TNSALP gene.  相似文献   
48.
Mitochondria contribute to myocyte injury during ischemia. After 30 and 45 min of ischemia in the isolated perfused rabbit heart, subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, sustain a decrease in oxidative phosphorylation through cytochrome oxidase. In contrast, oxidation through cytochrome oxidase in interfibrillar mitochondria (IFM), located between the myofibrils, remains unaffected. Cytochrome oxidase activity in the intact membrane requires an inner mitochondrial membrane lipid environment enriched in cardiolipin. During ischemia, the content of cardiolipin decreased only in SSM, whereas the content of other phospholipids was preserved. Ischemia did not alter the composition of the cardiolipin that remained in SSM. Cardiolipin content was preserved in IFM during ischemia. Thus cardiolipin is a relatively early target of ischemic mitochondrial damage, leading to loss of oxidative phosphorylation through cytochrome oxidase in SSM.  相似文献   
49.
We wished to determine whether exogenous glucagon-like peptide (GLP)-2 infusion stimulates intestinal growth in parenterally fed immature pigs. Piglets (106-108 days gestation) were given parenteral nutrient infusion (TPN), TPN + human GLP-2 (25 nmol. kg(-1). day(-1)), or sow's milk enterally (ENT) for 6 days. Intestinal protein synthesis was then measured in vivo after a bolus dose of [1-(13)C]phenylalanine, and degradation was calculated from the difference between protein accretion and synthesis. Crypt cell proliferation and apoptosis were measured in situ by 5-bromodeoxyuridine (BrdU) and terminal dUTP nick-end labeling (TUNEL), respectively. Intestinal protein and DNA accretion rates and villus heights were similar in GLP-2 and ENT pigs, and both were higher (P < 0.05) than in TPN pigs. GLP-2 decreased fractional protein degradation rate, whereas ENT increased fractional protein synthesis rate compared with TPN pigs. Percentage of TUNEL-positive cells in GLP-2 and ENT groups was 48 and 64% lower, respectively, than in TPN group (P < 0.05). However, ENT, but not GLP-2, increased percentage of BrdU-positive crypt cells above that in TPN piglets. We conclude that GLP-2 increases intestinal growth in premature, TPN-fed pigs by decreasing proteolysis and apoptosis, whereas enteral nutrition acts via increased protein synthesis and cell proliferation and decreased apoptosis.  相似文献   
50.
The trafficking of immature and mature dendritic cells (DCs) to different anatomical sites in vivo is critical for fulfilling their roles in the induction of Ag-specific immune responses. Although this process is complex and regulated by many mediators, the capacity of DCs to migrate is predominantly dependent on the expression of particular chemotactic receptors on the surface of DCs that enable them to move along chemotactic gradients formed by the corresponding chemokines and/or classical chemoattractants. Here we show that immature DCs (iDCs) respond to both fMLP and C5a as determined by chemotaxis and Ca2+ mobilization, whereas mature DCs (mDCs) respond to C5a, but not fMLP. Additionally, iDCs express the receptors for both fMLP and C5a at mRNA and protein levels. Upon maturation of DCs, fMLP receptor expression is almost completely absent, whereas C5a receptor mRNA and protein expression is maintained. Concomitantly, mDCs migrate chemotactically and mobilize intracellular Ca2+ in response to C5a, but not fMLP. Thus the interaction between C5a and its receptor is likely involved in the regulation of trafficking of both iDCs and mDCs, whereas fMLP mobilizes only iDCs. The differential responsiveness to fMLP and C5a of iDCs and mDCs suggests that they play different roles in the initiation of immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号