首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   82篇
  842篇
  2021年   8篇
  2020年   5篇
  2018年   10篇
  2017年   7篇
  2016年   15篇
  2015年   20篇
  2014年   16篇
  2013年   35篇
  2012年   43篇
  2011年   48篇
  2010年   19篇
  2009年   22篇
  2008年   41篇
  2007年   35篇
  2006年   33篇
  2005年   32篇
  2004年   27篇
  2003年   25篇
  2002年   28篇
  2001年   19篇
  2000年   21篇
  1999年   17篇
  1998年   10篇
  1997年   8篇
  1995年   14篇
  1994年   5篇
  1992年   12篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1983年   10篇
  1982年   8篇
  1979年   5篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1973年   5篇
  1972年   9篇
  1971年   6篇
  1970年   7篇
  1969年   6篇
  1968年   5篇
  1966年   6篇
  1965年   5篇
  1945年   5篇
  1944年   4篇
排序方式: 共有842条查询结果,搜索用时 15 毫秒
71.
Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma.  相似文献   
72.
73.

Background  

Plants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity.  相似文献   
74.
The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (?) or had not (+) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity, E L ) determined. In seedlings (?) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants (+) and (?) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees (+) tap roots, no significant differences with regard to size or any root system variable were found in plants (?) or (+) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (?) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R 2 = 0.83), unlike plants (+) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R 2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density and E L did not differ between roots, but did diminish with increasing distance from the stem in lateral roots. E L was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.  相似文献   
75.
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time.Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase.Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.The identification and quantification of protein phosphorylation under system perturbations is an integral part of systems biology (1, 2). The combination of phosphopeptide enrichment (36), stable isotope labeling, and high-resolution mass spectrometry (MS) methods (79) has become the method of choice for the identification of novel phosphorylation sites and for the quantitation of temporal dynamics within signaling networks (10, 11), allowing the behavior of thousands of phosphorylation sites to be studied in a single experiment (10, 12, 13). Nowadays, one of the most commonly adopted high-throughput phosphoproteomics strategies utilizes two consecutive separation steps: (i) an initial fractionation to reduce the sample complexity, and (ii) a phosphopeptide-specific affinity purification. Such techniques include strong cation exchange fractionation under acidic conditions (3), followed by a chelation-based method with the use of metal ions (i.e. immobilized metal ion affinity chromatography (4), metal oxide affinity chromatography (10, 14), or Ti4+ immobilized metal ion affinity chromatography (6)). Alternatives to strong cation exchange for the first sample fractionation step have also been reported, including the use of electrostatic repulsion liquid chromatography (15, 16), which is well suited for the identification of multiply phosphorylated peptides, or hydrophilic interaction chromatography (17).Although the number of detected phosphorylated peptides is nowadays impressive, these kinds of methodologies are still inclined to identify/quantify the more abundant phosphoproteins present in a sample. For example, phosphotyrosine peptides are underrepresented because of their relatively lower abundance.In order to analyze key signaling events that may occur on less abundant phosphoproteins, more targeted approaches, focused on a specific pathway or a specific post-translational modification, are thus still essential. Studies examining post-translational modifications are often based on immunoaffinity purification at the protein or peptide level using dedicated antibodies. Recent examples include the selective enrichment of acetylated lysines (18) and phosphorylated tyrosines (19, 20). More recently, the first specific methods targeting serine/threonine phosphorylation motifs using immune-affinity assays have emerged (21, 22). The advantages of targeted approaches are their potentially higher sensitivity and more specific throughput with, as a consequence, relatively faster and easier data interpretation, which make them attractive for many systems biology applications.Immunoaffinity enrichment can be applied at both the protein and the peptide level, and both have been explored to study protein tyrosine phosphorylation (23). The first one results mainly in information on total protein phosphorylation levels. The detection of the actual phosphoresidue might be hampered by the high content of unmodified peptides derived from the immune-purified phosphoprotein and its binding partners. Immunoprecipitation at the peptide level (20, 24, 25), in contrast, leads to improved phosphosite characterization, with the identification of hundreds of sites, albeit with the loss (generally) of information regarding total protein expression.To profile the dynamic regulation of phosphorylation events via mass spectrometry, stable isotope labeling is often implemented, either with the use of amino acids in cell culture (10) or via chemical peptide labeling of the proteolytic digests (26, 27). To identify low-abundant signaling events, phosphoprotein/phosphopeptide immunoprecipitation is typically performed on several milligrams of material because of the substoichiometric abundance of post-translational modifications. This may hamper the use of expensive isotope-labeling reagents such as iTRAQ or tandem mass tag reagents, given the large amount of chemicals needed. Boersema et al. (28) introduced an alternative sensitive and accurate triplex labeling approach using inexpensive reagents (i.e. formaldehyde) that is much less limited in terms of the sample type or amount. We combined this latter stable-isotope dimethyl labeling approach (2729) with highly specific antibodies raised against a set of cAMP-dependent protein kinase (PKA) phosphorylated substrates as based on the current literature (11, 3034). It is generally accepted that PKA phosphorylates sites with the reasonably stringent consensus motif [R/K][R/K/X]X[pS/pT]. It should be noted that this consensus motif resembles somewhat the motifs of other AGC kinases (e.g. Akt, PKG, PKC).The basicity of the PKA motifs may hamper their analysis via MS-based proteomics, especially when trypsin is used as a protease, as the peptides may become too small to be sequenced. The use of trypsin is also unfavorable in the approach presented here when attempting to immunoprecipitate peptides bearing the PKA motif. Therefore, we decided to use Lys-C in order to keep the (dominant (RRX[pS/pT])) phosphorylated motif intact. To enhance identification, we applied decision-tree MS/MS technology (9), which makes use of HCD and ETD for more efficient fragmentation, higher mass accuracy in tandem MS mode, and less background noise (35).We applied this method to screen the response of Jurkat T cells to prostaglandin E2 (PGE2) treatment. PGE2 is a potent inflammatory mediator that plays an important role in several immune-regulatory actions (36). It is produced by many different cell types, including tumor cells, where carcinogenesis is associated with chronic inflammatory responses (37). PGE2 signaling in T cells is initiated by its binding to the G protein–coupled receptors EP1, -2, -3, and -4. Signaling pathways that are initiated by PGE2 are for the most part under control of the second messenger cyclic adenosine monophosphate (cAMP),1 which is generated from ATP by adenylyl cyclase when PGE2 binds to EP2 or EP4 receptors. One of the primary targets of cAMP is PKA—cAMP binding releases the catalytic subunit activating the kinase. In the current study, we efficiently enriched close to 650 phosphopeptides containing the [R/K][R/K/X]X[pS/pT] consensus motif. Almost all these sites were absent in a recently reported comprehensive phosphoproteomics dataset of Jurkat T cells (12), compiled using shotgun strong cation exchange–immobilized metal ion affinity chromatography analysis and containing ∼10,500 phosphorylation sites, illustrative of the complementarity and selectivity of our approach. The qualitative and quantitative data presented here provide a wide-ranging and credible resource of likely PKA substrates. Network analysis confirmed several established cAMP-dependent signaling nodes in our dataset, although most identified potential PKA substrates are “novel” (i.e. not previously reported and/or linked to PKA). Therefore, the dataset presented here can be considered as a comprehensive and reliable resource for future research into cAMP-related signaling.  相似文献   
76.
Due to the low percentage of fetal DNA present in maternal plasma (< 10%) during early gestation, efficient extraction processes are required for successful downstream detection applications in non-invasive prenatal diagnostic testing. In this study, two extraction methods using similar chemistries but different workflows were compared for isolation efficiency and percent fetal DNA recovery. The Akonni Biosystems TruTip technology uses a binding matrix embedded in a pipette tip; the Circulating Nucleic Acids Kit from Qiagen employs a spin column approach. The TruTip method adds an extra step to decrease the recovery of DNA fragments larger than 600 bp from the sample to yield an overall higher percentage of smaller molecular weight DNA, effectively enriching for fetal DNA. In this evaluation, three separate extraction comparison studies were performed - a dilution series of fragmented DNA in plasma, a set of clinical maternal samples, and a blood collection tube time point study of maternal samples. Both extraction methods were found to efficiently extract small fragment DNA from large volumes of plasma. In the amended samples, the TruTip extraction method was ~15% less efficient with overall DNA recovery, but yielded an 87% increase in % fetal DNA relative to the Qiagen method. The average percent increase of fetal DNA of TruTip extracted samples compared to the Qiagen method was 55% for all sets of blinded clinical samples. A study comparing extraction efficiencies from whole blood samples incubated up to 48 hours prior to processing into plasma resulted in more consistent % fetal DNA recoveries using TruTip. The extracted products were tested on two detection platforms, quantitative real-time PCR and droplet digital PCR, and yielded similar results for both extraction methods.  相似文献   
77.
The positions of the outer boundaries of the 5'- and 3'-conserved segment sequences of integrons found at several different locations have been determined. The position of the 5' end of the 5'-conserved segment is the same for six independently located integrons, In1 (R46), In2 (Tn21), In3 (R388), In4 (Tn1696), In5 (pSCH884), and In0 (pVS1). However, the extent of the 3'-conserved segment differs in each integron. The sequences of In2 and In0 diverge first from the conserved sequence, and their divergence point corresponds to the 3'-conserved segment endpoint defined previously (H.W. Stokes and R.M. Hall, Mol. Microbiol. 3:1669-1683, 1989), which now represents the endpoint of a 359-base deletion in In0 and In2. The sequence identity in In3, In1, In4, and In5 extends beyond this point, but each sequence diverges from the conserved sequence at a different point within a short region. Insertions of IS6100 were identified adjacent to the end of the conserved region in In1 and 123 bases beyond the divergence point of In4. These 123 bases are identical to the sequence found at the mer end of the 11.2-kb insertion in Tn21 but are inverted. In5 and In0 are bounded by the same 25-base inverted repeat that bounds the 11.2-kb insert in Tn21, and this insert now corresponds to In2. However, while In0, In2, and In5 have features characteristic of transposable elements, differences in the structures of these three integrons and the absence of evidence of mobility currently preclude the identification of all of the sequences associated with a functional transposon of this type.  相似文献   
78.
Within-group female relationships, and relationships between females and adult males have not been described for wild western lowland gorillas. New data are presented here from Mbeli Bai in the Nouabale-Ndoki National Park, Republic of Congo. Nine groups were observed over a continuous 2-year period, and affiliative and agonistic interactions, as well as time spent by females and adult males in proximity to each other were recorded. Affiliative behavior was extremely rare in the bai, and measures of proximity between individuals were inconclusive because of the small sample sizes. Rates of agonistic interaction among females were highly variable between groups. The majority of agonistic interactions were undecided, and the supplant rate was low. Evidence for an agonistic dominance hierarchy is weak. The data do not support hypotheses that increased frugivory in western lowland gorillas raises levels of within-group contest competition; however, the need for intersite comparisons is stressed. In contrast, rates of agonistic behavior between females and silverback males were higher and more consistent between groups. Agonistic relationships between males and females conformed with patterns seen in mountain gorillas, where male protection from intraspecific aggression is important. The benefit females gain by forming long-term cooperative alliances appears to be small, and is likely outweighed by reproductive advantages associated with male protection.  相似文献   
79.
80.
Alkylating agents, such as methyl methanesulfonate (MMS), damage DNA and activate the DNA damage checkpoint. Although many of the checkpoint proteins that transduce damage signals have been identified and characterized, the mechanism that senses the damage and activates the checkpoint is not yet understood. To address this issue for alkylation damage, we have reconstituted the checkpoint response to MMS in Xenopus egg extracts. Using four different indicators for checkpoint activation (delay on entrance into mitosis, slowing of DNA replication, phosphorylation of the Chk1 protein, and physical association of the Rad17 checkpoint protein with damaged DNA), we report that MMS-induced checkpoint activation is dependent upon entrance into S phase. Additionally, we show that the replication of damaged double-stranded DNA, and not replication of damaged single-stranded DNA, is the molecular event that activates the checkpoint. Therefore, these data provide direct evidence that replication forks are an obligate intermediate in the activation of the DNA damage checkpoint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号