首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  2017年   2篇
  2016年   1篇
  2014年   6篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
  1967年   1篇
排序方式: 共有60条查询结果,搜索用时 234 毫秒
21.
The crystal structure of 14alpha-sterol demethylase from Mycobacterium tuberculosis (MTCYP51) [Proc. Natl. Acad. Sci. USA 98 (2001) 3068-3073] provides a template for analysis of eukaryotic orthologs which constitute the CYP51 family of cytochrome P450 proteins. Putative substrate recognition sites (SRSs) were identified in MTCYP51 based on the X-ray structures and have been compared with SRSs predicted based on Gotoh's analysis [J. Biol. Chem. 267 (1992) 83-90]. While Gotoh's SRS-4, 5, and 6 contribute in formation of the putative MTCYP51 substrate binding site, SRS-2 and 3 likely do not exist in MTCYP51. SRS-1, as part of the open BC loop, in the conformation found in the crystal can provide only limited contacts with the sterol. However, its role in substrate binding might dramatically increase if the loop closes in response to substrate binding. Thus, while the notion of SRSs has been very useful in leading to our current understanding of P450 structure and function, their identification by sequence alignment between distant P450 families will not necessarily be a good predictor of residues associated with substrate binding. Localization of CYP51 mutation hotspots in Candida albicans azole resistant isolates was analyzed with respect to SRSs. These mutations are found to be outside of the putative substrate interacting sites indicating the preservation of the protein active site under the pressure of azole treatment. Since the mutations residing outside the putative CYP51 active side can profoundly influence ligand binding within the active site, perhaps they provide insight into the basis of evolutionary changes which have occurred leading to different P450s.  相似文献   
22.
Some investigation in this laboratory pointed to an unexpectedly slow inhibition of cholinesterase by D-tubocurarine, occurring in addition to a typically instantaneous inhibition. In order to elucidate this phenomenon, the hydrolysis of butyrylthiocholine catalyzed by cholinesterase was recorded, in the absence and presence of D-tubocurarine, on a stopped-flow apparatus. Experimental results were analyzed by classical kinetic methods and by means of mathematical modeling. It was found that the inhibition is of a double character, consisting of an instantaneous phase and a slow one occurring in a minute time scale. It seems that the action of D-tubocurarine is a consequence of an instantaneous binding of D-tubocurarine to a peripheral site, followed by a relatively slow conformational transition in the enzyme.  相似文献   
23.
Sarcomeres, the functional units of contraction in striated muscle, are composed of an array of interdigitating protein filaments. Direct interaction between overlapping filaments generates muscular force, which produces animal movement. When filament length is known, sarcomere length successfully predicts potential force, even in whole muscles that contain billions of sarcomere units. Inability to perform in vivo sarcomere measurements with submicrometer resolution is a long-standing challenge in the muscle physiology field and has hampered studies of normal muscle function, adaptation, injury, aging, and disease, particularly in humans. Here, we develop theory and demonstrate the feasibility of to our knowledge a new technique that measures sarcomere length with submicrometer resolution. In this believed novel approach, we examine sarcomere structure by measuring the multiple resonant reflections that are uniquely defined by Fourier decomposition of the sarcomere protein spatial framework. Using a new supercontinuum spectroscopic system, we show close agreement between sarcomere lengths measured by resonant reflection spectroscopy and laser diffraction in an ensemble of 10 distinct muscles.  相似文献   
24.
25.
Acetylcholinesterase (AChE) terminates nerve-impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter, acetylcholine. Substrate traffic in AChE involves at least two binding sites, the catalytic and peripheral anionic sites, which have been suggested to be allosterically related and involved in substrate inhibition. Here, we present the crystal structures of Torpedo californica AChE complexed with the substrate acetylthiocholine, the product thiocholine and a nonhydrolysable substrate analogue. These structures provide a series of static snapshots of the substrate en route to the active site and identify, for the first time, binding of substrate and product at both the peripheral and active sites. Furthermore, they provide structural insight into substrate inhibition in AChE at two different substrate concentrations. Our structural data indicate that substrate inhibition at moderate substrate concentration is due to choline exit being hindered by a substrate molecule bound at the peripheral site. At the higher concentration, substrate inhibition arises from prevention of exit of acetate due to binding of two substrate molecules within the active-site gorge.  相似文献   
26.
Stereoselectivity of reversible inhibition of butyrylcholinesterase (BChE; EC 3.1.1.8) by optically pure ethopropazine [10-(2-diethylaminopropyl)phenothiazine hydrochloride] enantiomers and racemate was studied with acetylthiocholine (0.002–250 mM) as substrate. Molecular modelling resulted in the reaction between BChE and ethopropazine starting with the binding of ethopropazine to the enzyme peripheral anionic site. In the next step ethopropazine ‘slides down’ the enzyme gorge, resulting in interaction of the three rings of ethopropazine through π–π interactions with W82 in BChE. Inhibition mechanism was interpreted according to three kinetic models: A, B and C. The models differ in the type and number of enzyme–substrate, enzyme–inhibitor and enzyme–substrate–inhibitor complexes, i.e., presence of the Michaelis complex and/or acetylated BChE. Although, all three models reproduced well the BChE activity in absence of ethopropazine, model A was poor in describing inhibition with ethopropazine, while models B and C were better, especially for substrate concentrations above 0.2 mM. However model C was singled out because it approaches fulfilment of the one step-one event criteria, and confirms the inhibition mechanism derived from molecular modelling. Model C resulted in dissociation constants for the complex between BChE and ethopropazine: 61, 140 and 88 nM for R-enantiomer, S-enantiomer and racemate, respectively. The respective dissociation constants for the complexes between acetylated BChE and ethopropazine were 268, 730 and 365 nM. Butyrylcholinesterase had higher affinity for R-ethopropazine.  相似文献   
27.

Objective

To investigate grey (GM) and white matter (WM) abnormalities and their effects on cognitive and behavioral deficits in a large, phenotypically and genotypically well-characterized cohort of classic adult (aDM1, age at onset ≥20 years) or juvenile (jDM1, age at onset <20 years) patients with myotonic dystrophy type 1 (DM1).

Methods

A case-control study including 51 DM1 patients (17 jDM1 and 34 aDM1) and 34 controls was conducted at an academic medical center. Clinical, cognitive and structural MRI evaluations were obtained. Quantitative assessments of regional GM volumes, WM hyperintensities (WMHs), and microstructural WM tract damage were performed. The association between structural brain damage and clinical and cognitive findings was assessed.

Results

DM1 patients showed a high prevalence of WMHs, severe regional GM atrophy including the key nodes of the sensorimotor and main cognitive brain networks, and WM microstructural damage of the interhemispheric, corticospinal, limbic and associative pathways. WM tract damage extends well beyond the focal WMHs. While aDM1 patients had severe patterns of GM atrophy and WM tract damage, in jDM1 patients WM abnormalities exceeded GM involvement. In DM1, WMHs and microstructural damage, but not GM atrophy, correlated with cognitive deficits.

Conclusions

WM damage, through a disconnection between GM structures, is likely to be the major contributor to cognitive impairment in DM1. Our MRI findings in aDM1 and jDM1 patients support the hypothesis of a degenerative (premature aging) origin of the GM abnormalities and of developmental changes as the principal substrates of microstructural WM alterations in DM1.  相似文献   
28.
We describe a web tool ENZO (Enzyme Kinetics), a graphical interface for building kinetic models of enzyme catalyzed reactions. ENZO automatically generates the corresponding differential equations from a stipulated enzyme reaction scheme. These differential equations are processed by a numerical solver and a regression algorithm which fits the coefficients of differential equations to experimentally observed time course curves. ENZO allows rapid evaluation of rival reaction schemes and can be used for routine tests in enzyme kinetics. It is freely available as a web tool, at http://enzo.cmm.ki.si.  相似文献   
29.
In last two decades there was a huge step forward concerning rectal cancer treatment. The aim of our study was comparison of two time intervals regarding the methods of treatment and results of radical rectal cancer surgery. 407 patients operated on for rectal cancer were included in study. Those were patients with elective radical resection of solitary rectal tumor who survived first month after the operation. Patients were divided in two groups regarding the time of operation. In group one were patients operated on between 1996 and 2000 and in group two patients operated on between 2001 and 2005. We compared our results in both intervals with special interest about type of operation considering localization of the tumor, local recurrence and cancer related survival. Significant differences were found between two groups. There were more sphincter saving operations in second group, less local recurrences and better survival than in first group. This study observed significant improvements at recurrence rates and total survival for patients operated on rectal cancer.  相似文献   
30.
During the acetylcholinesterase catalytic process, the acetylcholine substrate attaches to the peripheral anionic site and then slides to the catalytic site situated in the center of the enzyme, at the bottom of a deep and narrow active gorge. Before the first catalytic cycle is complete, a second substrate molecule approaches and modulates the reaction. An inhibitor interferes with all steps and further complicates the situation. The reaction can be studied separately in the presence of two substrates, one good and one poor, and it can also be conducted simultaneously using a poor substrate as an inhibitor of the hydrolysis of a good substrate. Here, we have performed such an analysis, reducing the number of unknowns to those for the two substrates, while gaining additional information from the inhibition measurements without introducing new unknowns. To lower the number of realistic global minima in the analysis, we coupled the specific rate equation of the model to the rational polynomial of the corresponding degree. In contrast to the good substrate, the acetylation step by the poor substrate is found to be enhanced by the binding of the second substrate molecule to the peripheral anionic site. We attribute this to the different rate-limiting steps during the acetylation process: enhanced accommodation of the substrate paranitrophenylacetate is still slower than the hindered exit of the product paranitrophenol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号