首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2277篇
  免费   205篇
  国内免费   2篇
  2023年   6篇
  2022年   13篇
  2021年   30篇
  2020年   24篇
  2019年   17篇
  2018年   39篇
  2017年   34篇
  2016年   59篇
  2015年   106篇
  2014年   128篇
  2013年   130篇
  2012年   172篇
  2011年   154篇
  2010年   104篇
  2009年   102篇
  2008年   142篇
  2007年   150篇
  2006年   172篇
  2005年   144篇
  2004年   114篇
  2003年   123篇
  2002年   136篇
  2001年   23篇
  2000年   19篇
  1999年   23篇
  1998年   33篇
  1997年   20篇
  1996年   29篇
  1995年   23篇
  1994年   31篇
  1993年   18篇
  1992年   25篇
  1991年   14篇
  1990年   11篇
  1989年   17篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   13篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1978年   4篇
  1976年   9篇
  1975年   3篇
  1972年   3篇
  1971年   3篇
  1965年   2篇
  1951年   2篇
排序方式: 共有2484条查询结果,搜索用时 830 毫秒
891.
892.
We describe the characterization of a DNA aptamer that displays high affinity and specificity for the anthracyclines daunomycin and doxorubicin, both of which are frequently used in chemotherapy. Aptamers were isolated from a pool of random sequences using a semiautomated procedure for magnetic beads. All selected aptamers displayed high affinity for the target molecule daunomycin. One aptamer was further characterized and exhibited a dissociation constant (KD) of 20 nM. To examine the aptamer's binding properties and clarify its applicability for diagnostic assays, its performance under various buffer conditions was evaluated. The aptamer proved to be very robust and not dependent on the presence of specific ions. It also tolerated a wide pH range and immobilization via 5'-biotinylation. Furthermore, a competition assay for sensitive daunomycin detection was established. This not only allows the determination of the aptamer's specificity but also allows the quantification of as little as 8.4 microg/L daunomycin and doxorubicin.  相似文献   
893.
Polysialic acid (polySia) is a large glycan with restricted expression, typically found attached to the protein scaffold neural cell adhesion molecule (NCAM). PolySia is best known for its proposed role in modulating neuronal development. Its presence and potential functions outside the nervous systems are essentially unexplored. Herein we show the expression of polySia on hematopoietic progenitor cells, and demonstrate a role for this glycan in immune response using both acute inflammatory and tumor models. Specifically, we found that human NK cells modulate expression of NCAM and the degree of polymerization of its polySia glycans according to activation state. This contrasts with the mouse, where polySia and NCAM expression are restricted to multipotent hematopoietic progenitors and cells developing along a myeloid lineage. Sialyltransferase 8Sia IV(-/-) mice, which lacked polySia expression in the immune compartment, demonstrated an increased contact hypersensitivity response and decreased control of tumor growth as compared with wild-type animals. This is the first demonstration of polySia expression and regulation on myeloid cells, and the results in animal models suggest a role for polySia in immune regulation.  相似文献   
894.
It is shown that exchanges of single invariant amino acids in two C-terminal catalytic domain segments of the glucosyltransferase R (GtfR) strongly affect its catalytic properties. Drastic decreases of activity through re- or displacements of Tyr965 demonstrate a crucial role of this residue. Similarly, exchanges of amino acids Asp1004, Val1006, and Tyr1011 profoundly influenced catalytic parameters. These results are interpreted on the basis of a homology model of the catalytic domain. They are consistent with the view that Tyr965 is a constituent of the substrate-binding pocket and directly contacts the sucrose molecule, whereas the other critical residues contribute to the required positioning of Tyr965 and other active site residues.  相似文献   
895.
Taxonomical and geochemical investigations on freshwater ostracods from 15 waters in Central and Northeast (NE) Yakutia have been undertaken in order to estimate their potential usefulness in palaeoenvironmental reconstructions based on regional fossil records. Higher variability in environmental factors such as pH, electrical conductivity, and ionic content was observed in thermokarst-affected lakes in Central Yakutia than in NE Yakutia lakes. Species diversity of freshwater ostracods reached up to eight taxa per lake, mostly dominated by Candona weltneri Hartwig 1899, in Central Yakutia, whereas in NE Yakutian waters the diversity was lower and Candona muelleri jakutica Pietrzeniuk 1977 or Fabaeformiscandona inaequivalvis (Sars 1898) had highest frequencies. Coupled analyses of stable isotopes (δ18O, δ13C) and element ratios (Sr/Ca, Mg/Ca) were performed on both host waters and ostracod calcite, aiming to estimate the modern relationships. Correlations between host waters and ostracod calcite of single species were found for δ18O, δ13C and Sr/Ca and Mg/Ca ratios. The relationships between δ18O, Mg/Ca and Sr/Ca ratios and electrical conductivity (salinity) as an expression of solute concentrations in the waters mainly controlled by evaporation are more complicated but evident, and may be useful in future interpretation of geochemical data from fossil Siberian ostracods. Handling editor: K. Martens  相似文献   
896.
β-Alanine synthase (βAS) is the third enzyme in the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of the nucleotide bases uracil and thymine in higher organisms. It catalyzes the hydrolysis of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyrate to the corresponding β-amino acids. βASs are grouped into two phylogenetically unrelated subfamilies, a general eukaryote one and a fungal one. To reveal the molecular architecture and understand the catalytic mechanism of the general eukaryote βAS subfamily, we determined the crystal structure of Drosophila melanogaster βAS to 2.8 Å resolution. It shows a homooctameric assembly of the enzyme in the shape of a left-handed helical turn, in which tightly packed dimeric units are related by 2-fold symmetry. Such an assembly would allow formation of higher oligomers by attachment of additional dimers on both ends. The subunit has a nitrilase-like fold and consists of a central β-sandwich with a layer of α-helices packed against both sides. However, the core fold of the nitrilase superfamily enzymes is extended in D. melanogaster βAS by addition of several secondary structure elements at the N-terminus. The active site can be accessed from the solvent by a narrow channel and contains the triad of catalytic residues (Cys, Glu, and Lys) conserved in nitrilase-like enzymes.  相似文献   
897.
The Gga proteins represent a family of ubiquitously expressed clathrin adaptors engaged in vesicle budding at the tubular endosomal network/trans Golgi network. Their membrane recruitment is commonly thought to involve interactions with Arf and signals in cargo through the so-called VHS domain. For yeast Gga proteins, however, partners binding to its VHS domain have remained elusive and Gga localization does not absolutely depend on Arf. Here, we demonstrate that yeast Gga recruitment relies on a network of interactions between the scaffold Ysl2p/Mon2p, the small GTPase Arl1p, and the flippase Neo1p. Deletion of either YSL2 or ARL1 causes mislocalization of Gga2p, whereas a neo1-69 mutant accumulates Gga2p on aberrant structures. Remarkably, Ysl2p directly interacts with human and yeast Ggas through the VHS domain, and binding to Gga proteins is also found for the human Ysl2p orthologue hMon2. Thus, Ysl2p represents an essential, evolutionarily conserved member of a network controlling direct binding and membrane docking of Ggas. Because activated Arl1p is part of the network that binds Gga2p, Arf and Arf-like GTPases may interact in a regulatory cascade.  相似文献   
898.
Insulin and the insulin-like growth factors (IGFs) bind with high affinity to their cognate receptor and with lower affinity to the noncognate receptor. The major structural difference between insulin and the IGFs is that the IGFs are single chain polypeptides containing A-, B-, C-, and D-domains, whereas the insulin molecule contains separate A- and B-chains. The C-domain of IGF-I is critical for high affinity binding to the insulin-like growth factor I receptor, and lack of a C-domain largely explains the low affinity of insulin for the insulin-like growth factor I receptor. It is less clear why the IGFs have lower affinity for the insulin receptor. In this study, 24 insulin analogues and four IGF analogues were expressed and analyzed to explore the role of amino acid differences in the A- and B-domains between insulin and the IGFs in binding affinity for the insulin receptor. Using the information obtained from single substituted analogues, four multiple substituted analogues were produced. A "quadruple insulin" analogue ([Phe(A8), Ser(A10), Thr(B5), Gln(B16)]Ins) showed affinity as IGF-I for the insulin receptor, and a "sextuple insulin" analogue ([Phe(A8), Ser(A10), Thr(A18), Thr(B5), Thr(B14), Gln(B16)]Ins) showed an affinity close to that of IGF-II for the insulin receptor, whereas a "quadruple IGF-I" analogue ([His(4), Tyr(15), Thr(49), Ile(51)]IGF-I) and a "sextuple IGF-II" analogue ([His(7), Ala(16), Tyr(18), Thr(48), Ile(50), Asn(58)]IGF-II) showed affinities similar to that of insulin for the insulin receptor. The mitogenic potency of these analogues correlated well with the binding properties. Thus, a small number of A- and B-domain substitutions that map to the IGF surface equivalent to the classical binding surface of insulin weaken two hotspots that bind to the insulin receptor site 1.  相似文献   
899.
More than 150 million people suffer from diabetes mellitus worldwide, and this number is expected to rise substantially within the next decades. Despite its high prevalence, the pathogenesis of diabetes mellitus is not completely understood. Therefore, appropriate experimental models are essential tools to gain more insight into the genetics and pathogenesis of the disease. Here, we describe the current efforts to establish novel diabetes models derived from unbiased, phenotype-driven, large-scale N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects started a decade ago using hyperglycemia as a high-throughput screen parameter. Mouse lines were established according to their hyperglycemia phenotype over several generations, thereby revealing a mutation as cause for the aberrant phenotype. Chromosomal assignment of the causative mutation and subsequent candidate gene analysis led to the detection of the mutations that resulted in novel alleles of genes already known to be involved in glucose homeostasis, like glucokinase, insulin 2, and insulin receptor. Additional ENU-induced hyperglycemia lines are under genetic analysis. Improvements in screen for diabetic animals are implemented to detect more subtle phenotypes. Moreover, diet challenge assays are being employed to uncover interactions between genetic and environmental factors in the pathogenesis of diabetes mellitus. The new mouse mutants recovered in phenotype-driven ENU mouse mutagenesis projects complement the available models generated by targeted mutagenesis of candidate genes, all together providing the large resource of models required for a systematic dissection of the pathogenesis of diabetes mellitus.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号