首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2277篇
  免费   205篇
  国内免费   2篇
  2023年   6篇
  2022年   13篇
  2021年   30篇
  2020年   24篇
  2019年   17篇
  2018年   39篇
  2017年   34篇
  2016年   59篇
  2015年   106篇
  2014年   128篇
  2013年   130篇
  2012年   172篇
  2011年   154篇
  2010年   104篇
  2009年   102篇
  2008年   142篇
  2007年   150篇
  2006年   172篇
  2005年   144篇
  2004年   114篇
  2003年   123篇
  2002年   136篇
  2001年   23篇
  2000年   19篇
  1999年   23篇
  1998年   33篇
  1997年   20篇
  1996年   29篇
  1995年   23篇
  1994年   31篇
  1993年   18篇
  1992年   25篇
  1991年   14篇
  1990年   11篇
  1989年   17篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   13篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1978年   4篇
  1976年   9篇
  1975年   3篇
  1972年   3篇
  1971年   3篇
  1965年   2篇
  1951年   2篇
排序方式: 共有2484条查询结果,搜索用时 254 毫秒
851.
852.
2-Cys peroxiredoxins (Prxs) are a large family of peroxidases, responsible for antioxidant function and regulation in cell signaling, apoptosis and differentiation. The Escherichia coli alkylhydroperoxide reductase (AhpR) is a prototype of the Prxs-family, and is composed of an NADH-dependent AhpF reductase (57 kDa) and AhpC (21 kDa), catalyzing the reduction of H2O2. We show that the E. coli AhpC (EcAhpC, 187 residues) forms a decameric ring structure under reduced and close to physiological conditions, composed of five catalytic dimers. Single particle analysis of cryo-electron micrographs of C-terminal truncated (EcAhpC1 -172 and EcAhpC1 -182) and mutated forms of EcAhpC reveals the loss of decamer formation, indicating the importance of the very C-terminus of AhpC in dimer to decamer transition. The crystallographic structures of the truncated EcAhpC1 -172 and EcAhpC1 -182 demonstrate for the first time that, in contrast to the reduced form, the very C-terminus of the oxidized EcAhpC is oriented away from the AhpC dimer interface and away from the catalytic redox-center, reflecting structural rearrangements during redox-modulation and -oligomerization. Furthermore, using an ensemble of different truncated and mutated EcAhpC protein constructs the importance of the very C-terminus in AhpC activity and in AhpC–AhpF assembly has been demonstrated.  相似文献   
853.
Soil systems maintain important ecosystem processes crucial for plant life and food production. Especially agricultural systems are strongly affected by climate change due to low vegetation cover associated with high temperatures and drought. Nevertheless, the response of soil systems to climate change is little explored. We used microcosms with a simplified soil community to address effects of climate change using independent temperature and dryness gradients and addressed their effects on top–down control and litter decomposition. The community consisted of maize litter as a basal resource, fungi, springtails and as top predators mites and centipedes. As the body‐size structure is of high importance for communities, we included differently‐sized springtails and predator species. After seven weeks, the experiment was terminated, and the impact of climate change on direct feeding interactions and indirect effects across trophic levels was analysed. With increasing temperature and dryness, consumption rates increased, thereby amplifying the negative influence of consumer populations on their resources. Hence, these climate‐change variables increased the top–down control of 1) predators (mainly mites) on springtails and 2) fungi on litter decomposition. In addition, we found that the climate‐change variables strengthened trophic cascades from predators on fungi whose density was thus increasingly decoupled from top–down control by their springtail consumers. Their increased decomposition rates are of high importance for carbon cycling and may result in accelerated nutrient turnover. In conclusion, our results suggest that climate change may strongly influence the structure and functioning of soil systems by strengthening consumption rates and trophic cascades, which will have far reaching consequences for the nutrient turnover and productivity of agricultural ecosystems.  相似文献   
854.
The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43A315TKi mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43A315TKi animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.  相似文献   
855.
856.
Variovorax paradoxus B4 was isolated due to its ability to degrade the organic thiol compound mercaptosuccinate, which could be a promising precursor for novel polythioesters. The analysis of the proteome of this Gram-negative bacterium revealed several proteins with significantly increased expression during growth of cells with mercaptosuccinate as carbon source when compared to cells grown with gluconate or succinate. Among those, a large number of proteins involved in amino acid metabolism were identified, e.g., adenosylhomocysteinase and glutamate-ammonia ligase. Additionally, detection of superoxide dismutase strengthened the assumption of enhanced stress levels in mercaptosuccinate-grown cells. Several isoforms of a rhodanese domain-containing protein exhibited particularly increased expression during growth with mercaptosuccinate in comparison to gluconate (factor 14.2, stationary phase) or to succinate (factor 15.4, stationary phase). Besides this, augmented expression of the hypothetical protein VAPA_1c41240 raised attention. VAPA_1c41240 exhibited up to 13.3-fold (mercaptosuccinate vs gluconate) or 9.5-fold (mercaptosuccinate vs succinate) increased expression levels, and in silico searches revealed that this protein might be a thiol dioxygenase. Based on these results, a novel degradation pathway is proposed for mercaptosuccinate. The newly identified putative mercaptosuccinate dioxygenase could convert mercaptosuccinate to sulfinosuccinate by the introduction of two molecules of oxygen. Subsequently, sulfinosuccinate would be cleaved into succinate and sulfite either by a yet unknown enzyme, by spontaneous hydrolysis, or by the putative mercaptosuccinate dioxygenase itself. Succinate could then enter the central metabolism, while detoxification of sulfite could be achieved by the previously identified putative molybdopterin oxidoreductase. Biochemical studies will be done in the future to confirm this pathway.  相似文献   
857.
858.

Key message

The Neotropical tree Parkia panurensis shows a spatial genetic structure from the seed to the adult stage that is most likely the outcome of the seed dispersal provided by primates.

Abstract

Seed dispersal and pollination determine the gene flow within plant populations. In addition, seed dispersal creates the template for subsequent stages of plant recruitment. Therefore, the question arises whether and how seed dispersal affects the spatial genetic structure (SGS) of plant populations. In this study, we used microsatellites to analyse the SGS of the Neotropical tree Parkia panurensis (Fabaceae). This plant species is a major food resource for primates and its seeds are mainly dispersed by primates. Seeds were collected during behavioural observations of a tamarin mixed-species troop in north-eastern Peru. Additionally, leaf samples of juveniles and of adults trees of this species were collected throughout the home range of the tamarin troop. A significant SGS for embryos (located within the dispersed seeds) and for non-reproductive plants are found up to a distance of 300 m. This matches the distance within which most seeds are dispersed. In the adult stage, the scale of a significant SGS is reduced to 100 m. While we cannot explain this scale reduction, our study provides the first evidence that primate seed dispersal does influence the SGS of a tropical tree species.  相似文献   
859.

Background

Type I Bartter syndrome is a recessive human nephropathy caused by loss-of-function mutations in the SLC12A1 gene coding for the Na+-K+-2Cl cotransporter NKCC2. We recently established the mutant mouse line Slc12a1I299F exhibiting kidney defects highly similar to the late-onset manifestation of this hereditary human disease. Besides the kidney defects, low blood pressure and osteopenia were revealed in the homozygous mutant mice which were also described in humans. Beside its strong expression in the kidney, NKCC2 has been also shown to be expressed in other tissues in rodents i.e. the gastrointestinal tract, pancreatic beta cells, and specific compartments of the ear, nasal tissue and eye.

Results

To examine if, besides kidney defects, further organ systems and/or metabolic pathways are affected by the Slc12a1I299F mutation as primary or secondary effects, we describe a standardized, systemic phenotypic analysis of the mutant mouse line Slc12a1I299F in the German Mouse Clinic. Slc12a1I299F homozygous mutant mice and Slc12a1I299F heterozygous mutant littermates as controls were tested at the age of 4–6 months. Beside the already published changes in blood pressure and bone metabolism, a significantly lower body weight and fat content were found as new phenotypes for Slc12a1I299F homozygous mutant mice. Small additional effects included a mild erythropenic anemia in homozygous mutant males as well as a slight hyperalgesia in homozygous mutant females. For other functions, such as immunology, lung function and neurology, no distinct alterations were observed.

Conclusions

In this systemic analysis no clear primary effects of the Slc12a1I299F mutation appeared for the organs other than the kidneys where Slc12a1 expression has been described. On the other hand, long-term effects additional and/or secondary to the kidney lesions might also appear in humans harboring SLC12A1 mutations.  相似文献   
860.
Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号