首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   71篇
  2022年   7篇
  2021年   13篇
  2020年   8篇
  2019年   14篇
  2018年   8篇
  2016年   15篇
  2015年   18篇
  2014年   21篇
  2013年   23篇
  2012年   48篇
  2011年   34篇
  2010年   22篇
  2009年   24篇
  2008年   42篇
  2007年   30篇
  2006年   39篇
  2005年   38篇
  2004年   24篇
  2003年   31篇
  2002年   29篇
  2001年   14篇
  2000年   18篇
  1999年   21篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   9篇
  1993年   6篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   12篇
  1988年   12篇
  1987年   14篇
  1986年   9篇
  1985年   11篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1976年   5篇
  1975年   10篇
  1974年   10篇
  1973年   5篇
  1972年   7篇
  1971年   7篇
  1970年   7篇
排序方式: 共有825条查询结果,搜索用时 15 毫秒
81.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   
82.
Memory T cells mount an enhanced response to secondary infections. Such an enhancement has been attributed in part to the ability of memory cells to more rapidly respond to cognate stimulation. In this study we have examined the rapidity with which murine CD8(+) memory T cells respond to a localized infection with HSV. Although central memory T cells (TcM), but not the effector memory T cells, mounted a strong recall response to secondary infection, the kinetics of TcM proliferation, the magnitude of their expansion, and their infiltration into infected nonlymphoid tissues were not advanced compared with that observed for naive T cells. These findings imply that it is the lack of accelerated proliferation kinetics and the subsequent delayed dissemination into the periphery that limits the ability of TcM to rapidly control localized virus replication.  相似文献   
83.
Motile bacteria regulate chemotaxis through a highly conserved chemosensory signal-transduction system. System-wide analyses and mathematical modeling are facilitated by extensive experimental observations regarding bacterial chemotaxis proteins, including biochemical parameters, protein structures and protein-protein interaction maps. Thousands of signaling and regulatory chemotaxis proteins within a bacteria cell form a highly interconnected network through distinct protein-protein interactions. A bacterial cell is able to respond to multiple stimuli through a collection of chemoreceptors with different sensory modalities, which interact to affect the cooperativity and sensitivity of the chemotaxis response. The robustness or insensitivity of the chemotaxis system to perturbations in biochemical parameters is a product of the system's hierarchical network architecture.  相似文献   
84.
Juvenile idiopathic arthritis (JIA) is the most common cause of chronic childhood disability and encompasses a number of disease subgroups. In this study we have focused on systemic JIA (sJIA), which accounts for approximately 11% of UK JIA cases. This study reports the investigation of three members of the IL10 gene family as candidate susceptibility loci in children with sJIA. DNA from 473 unaffected controls and 172 patients with sJIA was genotyped for a single nucleotide polymorphism (SNP) in IL19 and IL20 and two SNPs in IL10. We examined evidence for association of the four SNPs by single marker and haplotype analysis. Significant differences in allele frequency were observed between cases and controls, for both IL10-1082 (p = 0.031) and IL20-468 (p = 0.028). Furthermore, examination of the haplotypes of IL10-1082 and IL20-468 revealed greater evidence for association (global p = 0.0006). This study demonstrates a significant increased prevalence of the low expressing IL10-1082 genotype in patients with sJIA. In addition, we show a separate association with an IL20 polymorphism, and the IL10-1082A/IL20-468T haplotype. The two marker 'A-T' haplotype confers an odds ratio of 2.24 for sJIA. This positive association suggests an important role for these cytokines in sJIA pathogenesis.  相似文献   
85.
86.
Non-alcoholic staetohepatitis (NASH) is associated with fat deposition in the liver favoring inflammatory processes and development of fibrosis, cirrhosis and finally hepatocellular cancer. In Western lifestyle countries, NASH has reached a 20% prevalence in the obese population with escalating tendency in the future. Very often, liver transplantation is the only therapeutic option. Recently, transplantation of hepatocyte-like cells differentiated from mesenchymal stem cells was suggested a feasible alternative to whole organ transplantation to ameliorate donor organ shortage. Hence, in the present work an animal model of NASH was established in immunodeficient mice to investigate the feasibility of human stem cell-derived hepatocyte-like cell transplantation. NASH was induced by feeding a methionine/choline-deficient diet (MCD-diet) for up to 5 weeks. Animals developed a fatty liver featuring fibrosis and elevation of the proinflammatory markers serum amyloid A (SAA) and tumor necrosis factor alpha (TNFα). Hepatic triglycerides were significantly increased as well as alanine aminotransferase demonstrating inflammation-linked hepatocyte damage. Elevation of αSMA mRNA and collagen I as well as liver architecture deterioation indicated massive fibrosis. Both short- and long-term post-transplantation human hepatocyte-like cells resided in the mouse host liver indicating parenchymal penetration and most likely functional engraftment. Hence, the NASH model in the immunodeficient mouse is the first to allow for the assessment of the therapeutic impact of human stem cell-derived hepatocyte transplantation.  相似文献   
87.
Respiratory exposure to allergen induces T cell tolerance and protection against the development of airway hyperactivity in animal models of asthma. Whereas systemic administration of dexamethasone during the delivery of respiratory Ag has been suggested to prevent the development of mucosal tolerance, the effects of local administration of corticosteroids, first-line treatment for patients with bronchial asthma, on mucosal tolerance remain unknown. To analyze the effects of systemic versus local administration of different types of corticosteroids on the development of mucosal tolerance, mice were exposed to respiratory allergen to induce mucosal tolerance with or without systemic or intranasal application of different doses of dexamethasone or prednisolone. After the induction of mucosal tolerance, proliferation of T cells was inhibited in tolerized mice, whereas systemic applications of corticosteroids restored T cell proliferation and secretion of Th2 cytokines. In contrast, inhaled corticosteroids showed no effect on both T cell proliferation and cytokine secretion. In addition, mice systemically treated with corticosteroids showed an increased airway hyperactivity with a significant lung inflammation, but also an increased T effector cells/regulatory T cells ratio in the second lymphoid organs when compared with mice that receive corticosteroids by inhalation. These results demonstrate that local administration of corticosteroids has no effect on the development of immune tolerance in contrast to systemically applied corticosteroids. Furthermore, although different concentrations of corticosteroids are administered to patients, our results demonstrated that the route of administration rather than the doses affects the effect of corticosteroids on respiratory tolerance induction. Considering the broad application of corticosteroids in patients with allergic disease and asthma, the route of administration of steroid substances seems crucial in terms of treatment and potential side effects. These findings may help elucidate the apparently contradicting results of corticosteroid treatment in allergic diseases.  相似文献   
88.
89.
Phosphorylation is a key post-translational modification for cellular signaling, and abnormalities in this process are observed in several neurodegenerative disorders. Among these disorders, Parkinson’s disease (PD) is particularly intriguing as there are both genetic causes of disease that involve phosphorylation, and pathological hallmarks of disease composed of a hyperphosphorylated protein. Two of the major genes linked to PD are themselves kinases – leucine rich repeat kinase 2 (LRRK2) and phosphatase and tensin induced homolog kinase 1 (PINK1). Mutations in LRRK2 lead to its increased kinase activity and dominantly inherited PD, while mutations in PINK1 lead to loss of function and recessive PD. A third genetic linkage to disease is α-synuclein, a protein that is heavily phosphorylated in Lewy bodies and Lewy neurites, the pathological hallmarks of PD. The phosphorylation of α-synuclein at various residues influences its aggregation, either positively or negatively, thereby impacting its central role in disease pathogenesis. Given these associations of phosphorylation with PD, modulation of this modification is an attractive therapeutic strategy. The kinases that act in these disease relevant pathways have been the primary target for such approaches. But, the development of kinase inhibitors has been complicated by the necessary specificity to retain safety, the redundancy of kinases leading to lack of efficacy, and the difficulties in overcoming the blood–brain barrier. The field of modulating phosphatases has the potential to overcome some of these issues and provide the next generation of therapeutic targets for PD. In this review, we address the phosphorylation pathways involved in PD, the kinases and issues related to their inhibition, and the evolving field of the phosphatases relevant in PD and how they may be targeted pharmacologically.  相似文献   
90.
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号