首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   73篇
  825篇
  2022年   7篇
  2021年   13篇
  2020年   8篇
  2019年   14篇
  2018年   8篇
  2016年   15篇
  2015年   18篇
  2014年   21篇
  2013年   23篇
  2012年   48篇
  2011年   34篇
  2010年   22篇
  2009年   24篇
  2008年   42篇
  2007年   30篇
  2006年   39篇
  2005年   38篇
  2004年   24篇
  2003年   31篇
  2002年   29篇
  2001年   14篇
  2000年   18篇
  1999年   21篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   9篇
  1993年   6篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   12篇
  1988年   12篇
  1987年   14篇
  1986年   9篇
  1985年   11篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1976年   5篇
  1975年   10篇
  1974年   10篇
  1973年   5篇
  1972年   7篇
  1971年   7篇
  1970年   7篇
排序方式: 共有825条查询结果,搜索用时 15 毫秒
681.
Show-jumping is an economically important breeding goal in Hanoverian warmblood horses. The aim of this study was a genome-wide association study (GWAS) for quantitative trait loci (QTL) for show-jumping in Hanoverian warmblood horses, employing the Illumina equine SNP50 Beadchip. For our analyses, we genotyped 115 stallions of the National State stud of Lower Saxony. The show-jumping talent of a horse includes style and ability in free-jumping. To control spurious associations based on population stratification, two different mixed linear animal model (MLM) approaches were employed, besides linear models with fixed effects only and adaptive permutations for correcting multiple testing. Population stratification was explained best in the MLM considering Hanoverian, Thoroughbred, Trakehner and Holsteiner genes and the marker identity-by-state relationship matrix. We identified six QTL for show-jumping on horse chromosomes (ECA) 1, 8, 9 and 26 (-log(10) P-value >5) and further putative QTL with -log(10) P-values of 3-5 on ECA1, 3, 11, 17 and 21. Within six QTL regions, we identified human performance-related genes including PAPSS2 on ECA1, MYL2 on ECA8, TRHR on ECA9 and GABPA on ECA26 and within the putative QTL regions NRAP on ECA1, and TBX4 on ECA11. The results of our GWAS suggest that genes involved in muscle structure, development and metabolism are crucial for elite show-jumping performance. Further studies are required to validate these QTL in larger data sets and further horse populations.  相似文献   
682.
Decorin, a small leucine-rich proteoglycan harboring a dermatan sulfate chain at its N-terminus, is involved in regulating matrix organization and cell signaling. Loss of the dermatan sulfate of decorin leads to an Ehlers-Danlos syndrome characterized by delayed wound healing. Decorin-null (Dcn−/−) mice display a phenotype similar to that of EDS patients. The fibrillar collagen phenotype of Dcn−/− mice could be rescued in vitro by decorin but not with decorin lacking the glycosaminoglycan chain. We utilized a 3D cell culture model to investigate the impact of the altered extracellular matrix on Dcn−/− fibroblasts. Using 2D gel electrophoresis followed by mass spectrometry, we identified vimentin as one of the proteins that was differentially upregulated by the presence of decorin. We discovered that a decorin-deficient matrix leads to abnormal nuclear morphology in the Dcn−/− fibroblasts. This phenotype could be rescued by the decorin proteoglycan but less efficiently by the decorin protein core. Decorin treatment led to a significant reduction of the α2β1 integrin at day 6 in Dcn−/− fibroblasts, whereas the protein core had no effect on β1. Interestingly, only the decorin core induced mRNA synthesis, phosphorylation and de novo synthesis of vimentin indicating that the proteoglycan decorin in the extracellular matrix stabilizes the vimentin intermediate filament system. We could support these results in vivo, because the dermis of wild-type mice have more vimentin and less β1 integrin compared to Dcn−/−. Furthermore, the α2β1 null fibroblasts also showed a reduced amount of vimentin compared to wild-type. These data show for the first time that decorin has an impact on the biology of α2β1 integrin and the vimentin intermediate filament system. Moreover, our findings provide a mechanistic explanation for the reported defects in wound healing associated with the Dcn−/− phenotype.  相似文献   
683.

Background

Low birth weight has been consistently associated with adult chronic disease risk. The thrifty phenotype hypothesis assumes that reduced fetal growth impacts some organs more than others. However, it remains unclear how birth weight relates to different body components, such as circumferences, adiposity, body segment lengths and limb proportions. We hypothesized that these components vary in their relationship to birth weight.

Methods

We analysed the relationship between birth weight and detailed anthropometry in 1270 singleton live-born neonates (668 male) from the Mater-University of Queensland Study of Pregnancy (Brisbane, Australia). We tested adjusted anthropometry for correlations with birth weight. We then performed stepwise multiple regression on birth weight of: body lengths, breadths and circumferences; relative limb to neck-rump proportions; or skinfold thicknesses. All analyses were adjusted for sex and gestational age, and used logged data.

Results

Circumferences, especially chest, were most strongly related to birth weight, while segment lengths (neck-rump, thigh, upper arm, and especially lower arm and lower leg) were relatively weakly related to birth weight, and limb lengths relative to neck-rump length showed no relationship. Skinfolds accounted for 36% of birth weight variance, but adjusting for size (neck-rump, thigh and upper arm lengths, and head circumference), this decreased to 10%. There was no evidence that heavier babies had proportionally thicker skinfolds.

Conclusions

Neonatal body measurements vary in their association with birth weight: head and chest circumferences showed the strongest associations while limb segment lengths did not relate strongly to birth weight. After adjusting for body size, subcutaneous fatness accounted for a smaller proportion of birth weight variance than previously reported. While heavier babies had absolutely thicker skinfolds, this was proportional to their size. Relative limb to trunk length was unrelated to birth weight, suggesting that limb proportions at birth do not index factors relevant to prenatal life.  相似文献   
684.
Cheng Lu  Gerhard Stock  Volker Knecht 《Proteins》2016,84(11):1690-1705
A local perturbation of a protein may lead to functional changes at some distal site, a phenomenon denoted as allostery. Here, we study the allosteric control of a protease using molecular dynamics simulations. The system considered is the bacterial protein DegS which includes a protease domain activated on ligand binding to an adjacent PDZ domain. Starting from crystallographic structures of DegS homo‐trimers, we perform simulations of the ligand‐free and ‐bound state of DegS at equilibrium. Considering a single protomer only, the trimeric state was mimicked by applying restraints on the residues in contact with other protomers in the DegS trimer. In addition, the bound state was also simulated without any restraints to mimic the monomer. Our results suggest that not only ligand release but also disassembly of a DegS trimer inhibits proteolytic activity. Considering various observables for structural changes, we infer allosteric pathways from the interface with other protomers to the active site. Moreover, we study how ligand release leads to (i) catalytically relevant changes involving residues 199–201 and (ii) a transition from a stretched to a bent conformation for residues 217–219 (which prohibits proper substrate binding). Finally, based on ligand‐induced Cα shifts we identify residues in contact with other protomers in the DegS trimer that likely transduce the perturbation from ligand release from a given protomer to adjacent protomers. These residues likely play a key role in the experimentally known effect of ligand release from a protomer on the proteolytic activity of the other protomers. Proteins 2016; 84:1690–1705. © 2016 Wiley Periodicals, Inc.  相似文献   
685.
Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses ("variolation" or "inoculation").  相似文献   
686.
The influence of a 90% jejunoileal bypass on the rat exocrine pancreas was studied by morphometrical procedures. In sham-operated animals exocrine acinar cells accounted for 80.3% of the pancreas volume. These cells are composed of 9.9% nuclei, 8.4% mitochondria, 12.2% zymogen granules, 0.3% lipid droplets and 69.2% of a compartment ("ERGLS") composed of endoplasmic reticulum, ribosomes, Golgi areas, lysosomes and the cytoplasmic ground substance. Intestinal bypass did not change the volume density of exocrine cells nor that of nuclei in the cells during the three postoperative months. The means nuclear diameter was approximately the same in both groups. However, the volume density of secretory granules diminished by 50%. This was accompanied by a decrease in mean granular diameter, but not in their numerical density. The volume density of lipid droplets increased 10 fold, that of mitochondria increased slightly from the 15th postoperative day but significantly from the 45th day. The remaining cellular compartment composed of "ERGLS" was not modified by intestinal bypass. These findings suggest that a 90% jejunoileal bypass induces major changes in the composition of pancreatic acinar cells but not in their size.  相似文献   
687.
Response regulator output in bacterial chemotaxis.   总被引:12,自引:0,他引:12       下载免费PDF全文
Chemotaxis responses in Escherichia coli are mediated by the phosphorylated response-regulator protein P-CheY. Biochemical and genetic studies have established the mechanisms by which the various components of the chemotaxis system, the membrane receptors and Che proteins function to modulate levels of CheY phosphorylation. Detailed models have been formulated to explain chemotaxis sensing in quantitative terms; however, the models cannot be adequately tested without knowledge of the quantitative relationship between P-CheY and bacterial swimming behavior. A computerized image analysis system was developed to collect extensive statistics on freeswimming and individual tethered cells. P-CheY levels were systematically varied by controlled expression of CheY in an E.coli strain lacking the CheY phosphatase, CheZ, and the receptor demethylating enzyme CheB. Tumbling frequency was found to vary with P-CheY concentration in a weakly sigmoidal fashion (apparent Hill coefficient approximately 2.5). This indicates that the high sensitivity of the chemotaxis system is not derived from highly cooperative interactions between P-CheY and the flagellar motor, but rather depends on nonlinear effects within the chemotaxis signal transduction network. The complex relationship between single flagella rotation and free-swimming behavior was examined; our results indicate that there is an additional level of information processing associated with interactions between the individual flagella. An allosteric model of the motor switching process is proposed which gives a good fit to the observed switching induced by P-CheY. Thus the level of intracellular P-CheY can be estimated from behavior determinations: approximately 30% of the intracellular pool of CheY appears to be phosphorylated in fully adapted wild-type cells.  相似文献   
688.
Kinesin undergoes a global folding conformational change from an extended active conformation at high ionic concentrations to a compact inhibited conformation at physiological ionic concentrations. Here we show that much of the observed ATPase activity of folded kinesin is due to contamination with proteolysis fragments that can still fold, but retain an activated ATPase function. In contrast, kinesin that contains an intact IAK-homology region exhibits pronounced inhibition of its ATPase activity (140-fold in 50 mM KCl) and weak net affinity for microtubules in the presence of ATP, resulting from selective inhibition of the release of ADP upon initial interaction with a microtubule. Subsequent processive cycling is only partially inhibited. Fusion proteins containing residues 883-937 of the kinesin alpha-chain bind tightly to microtubules; exposure of this microtubule-binding site in proteolysed species is probably responsible for their activated ATPase activities at low microtubule concentrations.  相似文献   
689.

Objectives

Evolutionary life history theory has a unique potential to shed light on human adaptive capabilities. Ultra-endurance challenges are a valuable experimental model allowing the direct testing of phenotypic plasticity via physiological trade-offs in resource allocation. This enhances our understanding of how the body prioritizes different functions when energetically stressed. However, despite the central role played by the brain in both hominin evolution and metabolic budgeting, cognitive plasticity during energetic deficit remains unstudied.

Materials

We considered human cognitive plasticity under conditions of energetic deficit by evaluating variability in performance in three key cognitive domains. To achieve this, cognitive performance in a sample of 48 athletes (m = 29, f = 19) was assessed before and after competing in multiday ultramarathons.

Results

We demonstrate that under conditions of energetic deficit, performance in tasks of spatial working memory (which assessed ability to store location information, promoting landscape navigation and facilitating resource location and calorie acquisition) increased. In contrast, psychomotor speed (reaction time) remained unchanged and episodic memory performance (ability to recall information about specific events) decreased.

Discussion

We propose that prioritization of spatial working memory performance during conditions of negative energy balance represents an adaptive response due to its role in facilitating calorie acquisition. We discuss these results with reference to a human evolutionary trajectory centred around encephalisation. Encephalisation affords great plasticity, facilitating rapid responses tailored to specific environmental conditions, and allowing humans to increase their capabilities as a phenotypically plastic species.
  相似文献   
690.
Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号