首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1554篇
  免费   148篇
  国内免费   3篇
  2023年   5篇
  2022年   11篇
  2021年   22篇
  2020年   10篇
  2019年   17篇
  2018年   32篇
  2017年   18篇
  2016年   24篇
  2015年   64篇
  2014年   79篇
  2013年   78篇
  2012年   118篇
  2011年   115篇
  2010年   73篇
  2009年   88篇
  2008年   100篇
  2007年   110篇
  2006年   106篇
  2005年   105篇
  2004年   105篇
  2003年   111篇
  2002年   96篇
  2001年   14篇
  2000年   12篇
  1999年   14篇
  1998年   19篇
  1997年   21篇
  1996年   20篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   5篇
  1974年   4篇
  1973年   6篇
  1966年   1篇
排序方式: 共有1705条查询结果,搜索用时 125 毫秒
991.
We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.  相似文献   
992.
993.
994.
995.
Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531) to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/LG carriers showed less activity than their LA/LA counterparts in both regions and less activity than S/LG healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.  相似文献   
996.
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.  相似文献   
997.
998.
999.
Antibiotic-resistance genes of bacterial origin are invaluable markers for plant genetic engineering. However, these genes are feared to pose possible risk to human health by horizontal gene transfer from transgenic plants to bacteria, potentially resulting in antibiotic-resistant pathogenic bacteria; this is a considerable regulatory concern in some countries. The Atwbc19 gene, encoding an Arabidopsis thaliana ATP-binding cassette transporter, has been reported to confer resistance to kanamycin specifically as an alternative to bacterial antibiotic-resistance genes. In this report, we transformed hybrid aspen (Populus canescens × P. grandidentata) with the Atwbc19 gene. Unlike Atwbc19-transgenic tobacco that was only resistant to kanamycin, the transgenic Populus plants also showed resistance to three other aminoglycoside antibiotics (neomycin, geneticin, and paromomycin) at comparable levels to plants containing a CaMV35S-nptII cassette. Although it is unknown why the transgenic Populus with the Atwbc19 gene is resistant to all aminoglycoside antibiotics tested, the broad utility of the Atwbc19 gene as a reporter gene is confirmed here in a second dicot species. Because the Atwbc19 gene is plant-ubiquitous, it might serve as an alternative selectable marker to current bacterial antibiotic-resistance marker genes and alleviate the potential risk for horizontal transfer of bacterial-resistance genes in transgenic plants.  相似文献   
1000.
Supplementation with l-arginine can increase uterine arterial blood flow and vascular perfusion of the preovulatory follicle in mares. Increased vascular perfusion of the preovulatory follicle has been correlated with successful pregnancy in mares. The objective of this study was to determine if supplemental l-arginine would increase ovarian arterial blood flow, vascular perfusion of the preovulatory follicle, and embryo recovery rates in mares. Mares were blocked by age and breed and assigned at random within block to l-arginine supplementation or control groups. Mares were fed l-arginine beginning 17 days before and through the duration of the study. Transrectal Doppler ultrasonography was used to measure ovarian arterial blood flow and vascular perfusion of the preovulatory follicle daily when it reached 35 mm and subsequent CL on Days 2, 4, and 6. Mares, on achieving a follicle of 35 mm or more were bred via artificial insemination and an embryo collection was attempted 7 days after ovulation. Treatment did not affect interovulatory interval (arginine-treated, 18.1 ± 2.6 days; control, 20.7 ± 2.3 days) or embryo recovery rate (arginine-treated, 54%; control, 48%). Mares treated with l-arginine had a larger follicle for the 10 days preceding ovulation than control mares (30.4 ± 1.2 and 26.3 ± 1.3 mm, respectively; P < 0.05) and vascular perfusion of the dominant follicle tended (P = 0.10) to be greater for the 4 days before ovulation. No differences were observed between groups in diameter or vascular perfusion of the CL. Resistance indices, normalized to ovulation, were not significantly different between groups during the follicular or luteal phase. Oral l-arginine supplementation increased the size and tended to increase perfusion of the follicle 1, but had no effect on luteal perfusion or embryo recovery rates in mares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号