全文获取类型
收费全文 | 153篇 |
免费 | 7篇 |
国内免费 | 1篇 |
专业分类
161篇 |
出版年
2021年 | 3篇 |
2020年 | 3篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 7篇 |
2013年 | 11篇 |
2012年 | 8篇 |
2011年 | 10篇 |
2010年 | 11篇 |
2009年 | 5篇 |
2008年 | 15篇 |
2007年 | 10篇 |
2006年 | 9篇 |
2005年 | 8篇 |
2004年 | 6篇 |
2003年 | 7篇 |
2002年 | 9篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1940年 | 1篇 |
排序方式: 共有161条查询结果,搜索用时 11 毫秒
41.
Proteins binding guanosine triphosphate (GTP) have emerged as important regulators in several cellular processes in plants. To investigate any role of such proteins in chloroplast functions, we subjected envelope, stroma and thylakoid fractions isolated from spinach chloroplasts to two different GTP-binding assays. With both methods, we detected GTP-specific binding only in the envelope fraction. Two chloroplast envelope proteins with the apparent molecular weights of 30.5 and 33.5 kDa, respectively, bound [α-32 P]GTP after SDS-PAGE followed by electroblotting onto a PVDF-membrane and renaturation. Both proteins were intrinsic proteins located in the outer chloroplast envelope. Also, when the fractions were incubated with [α-32 P]GTP, followed by periodate oxidation and borohydride reduction to cross-link GTP to proteins, two proteins in the envelope fraction, of apparent molecular weights of 28 and 39 kDa, appeared to specifically bind GTP. When agents that stimulate heterotrimeric G-proteins, cholera toxin or the mastoparan analogue mas7, were added to isolated chloroplast envelope, the binding of radiolabelled GTP to the 39 kDa protein, a protein of the inner chloroplast envelope, was stimulated, whereas GTP-binding of the 28 kDa protein, a protein of the outer envelope, was unchanged. Mas7 also stimulated synthesis of monogalactosyl diacylglycerol in isolated chloroplast envelope. The occurrence and regulation of GTP-binding proteins in the chloroplast envelope suggests that GTP-binding proteins could be involved in communication with the extraplastidic compartment during chloroplast biogenesis and development. 相似文献
42.
Pitchayapa Mahasuk Annika Stina Kullik Mohammed Cassim Iqbal Christian Möllers 《Plant Cell, Tissue and Organ Culture》2017,130(2):443-447
The NLN-medium has been successfully used, since 1982, for microspore culture in Brassica napus and other Brassica species. Changes to the media composition were restricted to carbohydrate and nitrogen sources and growth regulators while micro-nutrients have not been optimized. The NLN-medium contains boron at a concentration of 162 µM. Boron is required for diverse physiological and metabolic processes in the cell. This study investigated the effect of seven- and 13-fold increased boron concentration on the induction of embryos in microspore cultures of four genotypes of B. napus. A significant improvement of microspore embryogenesis was achieved by both enhanced boron concentrations in the NLN medium. No effect on the regeneration of embryo to plant conversion was observed. 相似文献
43.
Stina Lindman Ida Johansson Eva Thulin Sara Linse 《Protein science : a publication of the Protein Society》2009,18(6):1221-1229
The affinity between the 1–157 and 158–238 fragments of green fluorescent protein (GFP) is too low for spontaneous in vivo reassembly of the protein upon co-expression of the two fragments. This prevents chromophore maturation and the cells lack GFP fluorescence. We have utilized the very high affinity between the two EF-hands of calbindin D9k to facilitate GFP assembly from its fragments and to introduce a calcium dependent molecular switch. In GFPN-EF1, residues 1–157 of GFP are fused to residues 1–43 of calbindin, and in EF2-GFPC, residues 44–75 of calbindin are fused to residues 158–238 of GFP. When co-expressed, GFPN-EF1 and EF2-GFPC associate spontaneously and rapidly resulting in a folded reconstituted protein with bright GFP fluorescence. The high affinity of GFPN-EF1 for EF2-GFPC leads to brighter fluorescence of the cells compared to cells with a control constructs carrying leucine zippers (Wilson et al., Nature Methods 2004;3:255). The complex of GFPN-EF1 and EF2-GFPC was purified from cells using metal-ion chelate chromatography and the temperature dependence of GFP fluorescence was found to be calcium dependent. The GFPN-EF1 and EF2-GFPC fragments were separated by ion exchange chromatography. The assembly of the fragments was found to be reversible and the complex was regained upon mixing, as evidenced by surface plasmon resonance (SPR) data. The affinity between GFPN-EF1 and EF2-GFPC as well as rates of association and dissociation were found to be Ca2+-dependent. 相似文献
44.
Lisa Christiansson Stina S?derlund Emma Svensson Satu Mustjoki Mats Bengtsson Bengt Simonsson Ulla Olsson-Str?mberg Angelica S. I. Loskog 《PloS one》2013,8(1)
Immunotherapy (eg interferon α) in combination with tyrosine kinase inhibitors is currently in clinical trials for treatment of chronic myeloid leukemia (CML). Cancer patients commonly have problems with so called immune escape mechanisms that may hamper immunotherapy. Hence, to study the function of the immune system in CML is of interest. In the present paper we have identified immune escape mechanisms in CML with focus on those that directly hamper T cells since these cells are important to control tumor progression. CML patient samples were investigated for the presence of myeloid-derived suppressor cells (MDSCs), expression of programmed death receptor ligand 1/programmed death receptor 1 (PD-L1/PD-1), arginase 1 and soluble CD25. MDSC levels were increased in samples from Sokal high risk patients (p<0,05) and the cells were present on both CD34 negative and CD34 positive cell populations. Furthermore, expression of the MDSC-associated molecule arginase 1, known to inhibit T cells, was increased in the patients (p = 0,0079). Myeloid cells upregulated PD-L1 (p<0,05) and the receptor PD-1 was present on T cells. However, PD-L1 blockade did not increase T cell proliferation but upregulated IL-2 secretion. Finally, soluble CD25 was increased in high risk patients (p<0,0001). In conclusion T cells in CML patients may be under the control of different immune escape mechanisms that could hamper the use of immunotherapy in these patients. These escape mechanisms should be monitored in trials to understand their importance and how to overcome the immune suppression. 相似文献
45.
46.
Lundgren S Lohkamp B Andersen B Piskur J Dobritzsch D 《Journal of molecular biology》2008,377(5):1544-1559
β-Alanine synthase (βAS) is the third enzyme in the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of the nucleotide bases uracil and thymine in higher organisms. It catalyzes the hydrolysis of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyrate to the corresponding β-amino acids. βASs are grouped into two phylogenetically unrelated subfamilies, a general eukaryote one and a fungal one. To reveal the molecular architecture and understand the catalytic mechanism of the general eukaryote βAS subfamily, we determined the crystal structure of Drosophila melanogaster βAS to 2.8 Å resolution. It shows a homooctameric assembly of the enzyme in the shape of a left-handed helical turn, in which tightly packed dimeric units are related by 2-fold symmetry. Such an assembly would allow formation of higher oligomers by attachment of additional dimers on both ends. The subunit has a nitrilase-like fold and consists of a central β-sandwich with a layer of α-helices packed against both sides. However, the core fold of the nitrilase superfamily enzymes is extended in D. melanogaster βAS by addition of several secondary structure elements at the N-terminus. The active site can be accessed from the solvent by a narrow channel and contains the triad of catalytic residues (Cys, Glu, and Lys) conserved in nitrilase-like enzymes. 相似文献
47.
Henrik
stdal Stina G. S gaard Em ke Bendixen Henrik J. Andersen 《Free radical research》2001,35(6):757-766
Hydrogen peroxide activation of MMb with and without the presence of BSA gave rise to rapid formation of hyper-valent myoglobin species, myoglobin ferryl radical (·MbFe(IV)=O) and/or ferrylmyoglobin (MbFe(IV)=O). Reduction of MbFe(IV)=O showed first-order kinetics for a 1-2 times stoichiometric excess of H2O2 to MMb while a 3-10 times stoichiometric excess of H2O2 resulted in a biphasic reaction pattern. Radical species formed in the reaction between MMb, H2O2 and BSA were influenced by [H2O2] as measured by electron spin resonance (ESR) spectroscopy and resulted in the formation of cross-linking between BSA and myoglobin which was confirmed by SDS-PAGE and subsequent amino acid sequencing. Moreover, dityrosine was formed in the initial phases of the reaction for all concentrations of H2O2. However, initially formed dityrosine was subsequently utilized in reactions employing stoichiometric excess of H2O2 to MMb. The observed breakdown of dityrosine was ascribed to additional radical species formed from the interaction between H2O2 and the hyper-valent iron-center of H2O2-activated MMb. 相似文献
48.
Axelsson S Chéramy M Hjorth M Pihl M Akerman L Martinuzzi E Mallone R Ludvigsson J Casas R 《PloS one》2011,6(12):e29008
A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD65. Frequencies of naïve, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD65 autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD65, but not with control antigens, compared with placebo subjects. GAD65-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD65 enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD65-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD65 immunity. 相似文献
49.
Strong negative reactions, physical symptoms, and behavioral disruptions due to environmental odors are common in the adult population. We investigated relationships among such environmental chemosensory responsivity (CR), personality traits, affective states, and odor perception. Study 1 showed that CR and neuroticism were positively correlated in a sample of young adults (n = 101), suggesting that persons high in neuroticism respond more negatively to environmental odors. Study 2 explored the relationships among CR, noise responsivity (NR), neuroticism, and odor perception (i.e., pleasantness and intensity) in a subset of participants (n = 40). High CR was associated with high NR. Regression analyses indicated that high CR predicted higher odor intensity ratings and low olfactory threshold (high sensitivity) predicted lower pleasantness ratings. However, neuroticism was not directly associated with odor ratings or thresholds. Overall, the results suggest that CR and odor thresholds predict perceptual ratings of odors and that high CR is associated with nonchemosensory affective traits. 相似文献
50.
Fructose-6-phosphate aldolase from Escherichia coli is a member of a small enzyme subfamily (MipB/TalC family) that belongs to the class I aldolases. The three-dimensional structure of this enzyme has been determined at 1.93 A resolution by single isomorphous replacement and tenfold non-crystallographic symmetry averaging and refined to an R-factor of 19.9% (R(free) 21.3%). The subunit folds into an alpha/beta barrel, with the catalytic lysine residue on barrel strand beta 4. It is very similar in overall structure to that of bacterial and mammalian transaldolases, although more compact due to extensive deletions of additional secondary structural elements. The enzyme forms a decamer of identical subunits with point group symmetry 52. Five subunits are arranged as a pentamer, and two ring-like pentamers pack like a doughnut to form the decamer. A major interaction within the pentamer is through the C-terminal helix from one monomer, which runs across the active site of the neighbouring subunit. In classical transaldolases, this helix folds back and covers the active site of the same subunit and is involved in dimer formation. The inter-subunit helix swapping appears to be a major determinant for the formation of pentamers rather than dimers while at the same time preserving importing interactions of this helix with the active site of the enzyme. The active site lysine residue is covalently modified, by forming a carbinolamine with glyceraldehyde from the crystallisation mixture. The catalytic machinery is very similar to that of transaldolase, which together with the overall structural similarity suggests that enzymes of the MipB/TALC subfamily are evolutionary related to the transaldolase family. 相似文献