全文获取类型
收费全文 | 161篇 |
免费 | 4篇 |
国内免费 | 1篇 |
专业分类
166篇 |
出版年
2024年 | 3篇 |
2021年 | 3篇 |
2020年 | 3篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 7篇 |
2013年 | 11篇 |
2012年 | 8篇 |
2011年 | 10篇 |
2010年 | 12篇 |
2009年 | 5篇 |
2008年 | 15篇 |
2007年 | 11篇 |
2006年 | 9篇 |
2005年 | 8篇 |
2004年 | 6篇 |
2003年 | 7篇 |
2002年 | 9篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1940年 | 1篇 |
排序方式: 共有166条查询结果,搜索用时 15 毫秒
151.
Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets. 相似文献
152.
Bertil Löwkvist Stina M. Oredsson Ingvar Holm Hadar Emanuelsson Olle Heby 《Cell and tissue research》1987,249(1):151-160
Summary Inhibition of polyamine synthesis in early chick embryos blocks their development at gastrulation. Analyses of arrested embryos show that mesodermal outgrowth and differentiation are drastically impaired. To study these effects in greater detail, we have used primary cultures of embryonic mesoderm from chick. The cultures were treated with -difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase, the first and rate-limiting enzyme in polyamine synthesis. In control culture medium, mesodermal cells retained their in ovo outgrowth behavior and differentiation pattern. Addition of 10 mM DFMO to the culture medium, however, retarded attachment and outgrowth, and reduced the rate of proliferation of the mesodermal cells. Furthermore, the expression of differentiated phenotypes, such as beating heart tissue, erythroid cells, and adipocyte-like cells, was delayed. Simultaneous addition of 100 M putrescine prevented or reduced the effects of DFMO, showing that these were indeed caused by polyamine deficiency. In the DFMO-treated mesoderm, DNA synthesis was markedly suppressed by the first day. Similar effects on RNA and protein synthesis developed at a later time. Our data suggest that a reduction in the concentrations of the polyamines decreases the rate of mesodermal cell proliferation, and as a conseqence delays the expression of differentiated phenotypes. 相似文献
153.
Alanko SM Halling KK Maunula S Slotte JP Ramstedt B 《Biochimica et biophysica acta》2005,1715(2):111-121
The formation of sterol and palmitoyl sphingomyelin enriched ordered domains in a fluid bilayer was examined using domain selective fluorescent reporter molecules (cholestatrienol and trans-parinaric acid containing lipids) together with a quencher molecule in the fluid phase. The aim of the study was to explore how stable the ordered domains were and how different, biologically interesting, membrane intercalators could affect domain stability and sterol distribution between domains. We show that sterols easily can be displaced from ordered domains by a variety of saturated, single- and double-chain membrane intercalators with a small polar group as a common denominator. Of the two-chain intercalators examined, both palmitoyl ceramide and palmitoyl dihydroceramide were effective in displacing sterols from ordered domains. Of the single-chain intercalators, hexadecanol and hexadecyl amide displaced the sterol from sterol/sphingomyelin domains, whereas palmitic acid, sphingosine and sphinganine failed to do so. All molecules examined stabilized the sphingomyelin-rich domains, as reported by trans-parinaric-sphingomyelin and by scanning calorimetry. Parallels between the displacement of sterol from ordered domains in our model membrane system and the ability of the above mentioned molecules to alter the chemical activity and distribution of sterols in biological membranes are discussed. 相似文献
154.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor. 相似文献
155.
Heli Juottonen Laurent Fontaine Christian Wurzbacher Stina Drakare Sari Peura Alexander Eiler 《Environmental microbiology》2020,22(8):3158-3171
Despite their key role in biogeochemical processes, particularly the methane cycle, archaea are widely underrepresented in molecular surveys because of their lower abundance compared with bacteria and eukaryotes. Here, we use parallel high-resolution small subunit rRNA gene sequencing to explore archaeal diversity in 109 Swedish lakes and correlate archaeal community assembly mechanisms to large-scale latitudinal, climatic (nemoral to arctic) and nutrient (oligotrophic to eutrophic) gradients. Sequencing with universal primers showed the contribution of archaea was on average 0.8% but increased up to 1.5% of the three domains in forest lakes. Archaea-specific sequencing revealed that freshwater archaeal diversity could be partly explained by lake variables associated with nutrient status. Combined with deterministic co-occurrence patterns this finding suggests that ecological drift is overridden by environmental sorting, as well as other deterministic processes such as biogeographic and evolutionary history, leading to lake-specific archaeal biodiversity. Acetoclastic, hydrogenotrophic and methylotrophic methanogens as well as ammonia-oxidizing archaea were frequently detected across the lakes. Archaea-specific sequencing also revealed representatives of Woesearchaeota and other phyla of the DPANN superphylum. This study adds to our understanding of the ecological range of key archaea in freshwaters and links these taxa to hypotheses about processes governing biogeochemical cycles in lakes. 相似文献
156.
Stina Leskelä Nadine Huber Dorit Hoffmann Hannah Rostalski Anne M. Remes Mari Takalo Mikko Hiltunen Annakaisa Haapasalo 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2021,1868(7):119021
C9orf72 hexanucleotide repeat expansion (HRE) is the major genetic cause underpinning frontotemporal lobar degeneration (FLTD) and amyotrophic lateral sclerosis (ALS). C9orf72 HRE-associated pathogenesis involves both loss-of-function, through reduced C9orf72 levels, and gain-of-function mechanisms, including formation of RNA foci and generation of dipeptide repeat (DPR) proteins. In addition, dysfunctional protein degradation pathways, i.e. autophagy and ubiquitin-proteasome system (UPS), are suggested. Our aim was to study the gain-of-function mechanisms in the context of the function of protein degradation pathways as well as the regulation of the DPR proteins through these pathways. To this end, we expressed the pathological HRE in neuronal N2a cells and mouse primary cortical neurons. Protein degradation pathways were modulated to induce or block autophagy or to inhibit UPS. In addition, proteasomal activity was assessed. The C9orf72 HRE-expressing N2a cells and neurons were confirmed to produce RNA foci and DPR proteins, predominantly the Poly-GP proteins. However, the presence of these pathological hallmarks did not result in alterations in autophagy or proteasomal activity in either of the studied cell types. In N2a cells, Poly-GP proteins appeared in soluble forms and Lactacystin-mediated UPS inhibition increased their levels, indicating proteasomal regulation. Similar effects were not observed in cortical neurons, where the Poly-GP proteins formed also higher molecular weight forms. These results suggest a cell type-specific morphology and regulation of the DPR proteins. Further studies in other model systems may shed additional light onto the effects of the C9orf72 HRE on cellular protein degradation pathways and the regulation of the DPR protein levels. 相似文献
157.
158.
In nature, the same biochemical reaction can be catalyzed by enzymes having fundamentally different folds, reaction mechanisms and origins. For example, the third step of the reductive catabolism of pyrimidines, the conversion of N-carbamyl-β-alanine to β-alanine, is catalyzed by two β-alanine synthase (βASase, EC 3.5.1.6) subfamilies. We show that the “prototype” eukaryote βASases, such as those from Drosophila melanogaster and Arabidopsis thaliana, are relatively efficient in the conversion of N-carbamyl-βA compared with a representative of fungal βASases, the yeast Saccharomyces kluyveri βASase, which has a high Km value (71 mM). S. kluyveri βASase is specifically inhibited by dipeptides and tripeptides, and the apparent Ki value of glycyl-glycine is in the same range as the substrate Km. We show that this inhibitor binds to the enzyme active center in a similar way as the substrate. The observed structural similarities and inhibition behavior, as well as the phylogenetic relationship, suggest that the ancestor of the fungal βASase was a protease that had modified its profession and become involved in the metabolism of nucleic acid precursors. 相似文献
159.
The spermine analogue N(1),N(11)-diethylnorspermine (DENSPM) efficiently depletes the polyamine pools in the breast cancer cell line L56Br-C1 and induces apoptotic cell death via the mitochondrial pathway. In this study, we have over-expressed the anti-apoptotic protein Bcl-2 in L56Br-C1 cells and investigated the effect of DENSPM treatment. DENSPM-induced cell death was significantly reduced in Bcl-2 over-expressing cells. Bcl-2 over-expression reduced DENSPM-induced release of the pro-apoptotic proteins AIF, cytochrome c, and Smac/DIABLO from the mitochondria. Bcl-2 over-expression reduced the DENSPM-induced activation of caspase-3. Bcl-2 over-expression also prevented DENSPM-induced Bax cleavage and reduction of Bcl-X(L) and survivin levels. The DENSPM-induced activation of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase was reduced by Bcl-2 over-expression, partly preventing polyamine depletion. Thus, Bcl-2 over-expression prevented a number of DENSPM-induced apoptotic effects. 相似文献
160.