首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6521篇
  免费   775篇
  国内免费   4篇
  7300篇
  2021年   79篇
  2019年   52篇
  2018年   76篇
  2017年   57篇
  2016年   108篇
  2015年   186篇
  2014年   179篇
  2013年   266篇
  2012年   281篇
  2011年   341篇
  2010年   202篇
  2009年   175篇
  2008年   267篇
  2007年   252篇
  2006年   216篇
  2005年   254篇
  2004年   223篇
  2003年   227篇
  2002年   210篇
  2001年   178篇
  2000年   147篇
  1999年   160篇
  1998年   105篇
  1997年   76篇
  1996年   79篇
  1995年   69篇
  1994年   84篇
  1993年   68篇
  1992年   124篇
  1991年   117篇
  1990年   137篇
  1989年   118篇
  1988年   118篇
  1987年   98篇
  1986年   87篇
  1985年   97篇
  1984年   90篇
  1983年   72篇
  1982年   76篇
  1981年   84篇
  1980年   64篇
  1979年   83篇
  1978年   60篇
  1977年   53篇
  1976年   58篇
  1975年   65篇
  1974年   64篇
  1973年   70篇
  1972年   64篇
  1968年   51篇
排序方式: 共有7300条查询结果,搜索用时 0 毫秒
991.
The acquisition of cellular immortality is a critical step in the tumorigenic process that requires stabilization of the telomeres, nucleoprotein structures at the termini of chromosomes. While the majority of human tumors stabilize their telomeres through activation of telomerase (hTERT), a significant portion (10-15%) utilize a poorly understood alternative mechanism of telomere maintenance referred to as ALT (Alternative Lengthening of Telomeres). Strikingly, the ALT mechanism is more prevalent in tumors arising from tissues of mesenchymal origin than in those of epithelial origin. This observation suggests that cell type specific mechanisms favor the activation of the ALT mechanism versus telomerase in human tumorigenesis. In addition, the presence of an alternative mechanism of telomere maintenance raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies might escape by activating the ALT pathway. For these reasons, delineating the ALT mechanism is critical for our understanding of the tumorigenic process and the development of ALT-specific anti-neoplastic therapies. Recent studies have demonstrated that epigenetic modifications at telomeres have a profound effect on telomere length, and may also be linked to the ALT mechanism. In this review we focus on these recent advances and their implications in telomere maintenance.  相似文献   
992.
993.
The temperature dependence of helical propensities for the peptides Ac-ZGG-(KAAAA)(3)X-NH(2) (Z = Y or G, X = A, K, and D-Arg) were studied both experimentally and by MD simulations. Good agreement is observed in both the absolute helical propensities as well as relative helical content along the sequence; the global minimum on the calculated free energy landscape corresponds to a single alpha-helical conformation running from K4 to A18 with some terminal fraying, particularly at the C-terminus. Energy component analysis shows that the single helix state has favorable intramolecular electrostatic energy due to hydrogen bonds, and that less-favorable two-helix globular states have favorable solvation energy. The central lysine residues do not appear to increase helicity; however, both experimental and simulation studies show increasing helicity in the series X = Ala --> Lys --> D-Arg. This C-capping preference was also experimentally confirmed in Ac-(KAAAA)(3)X-GY-NH(2) and (KAAAA)(3)X-GY-NH(2) sequences. The roles of the C-capping groups, and of lysines throughout the sequence, in the MD-derived ensembles are analyzed in detail.  相似文献   
994.
In overhydrated hereditary stomatocytosis (OHSt), the membrane raft-associated stomatin is deficient from the erythrocyte membrane. We have investigated two aspects of raft structure and function in OHSt erythrocytes. First, we have studied the distribution of other membrane and cytoskeletal proteins in rafts by analysis of detergent-resistant membranes (DRMs). In normal erythrocytes, 29% of the actin was DRM-associated, whereas in two unrelated OHSt patients the DRM-associated actin was reduced to <10%. In addition, there was a reduction in the amount of the actin-associated protein tropomodulin in DRMs from these OHSt cells. When stomatin was expressed in Madin-Darby canine kidney cells, actin association with the membrane was increased. Second, we have studied Ca2+-dependent exovesiculation from the erythrocyte membrane. Using atomic force microscopy and proteomics analysis, exovesicles derived from OHSt cells were found to be increased in number and abnormal in size, and contained greatly increased amounts of the raft proteins flotillin-1 and -2 and the calcium binding proteins annexin VII, sorcin and copine 1, while the concentrations of stomatin and annexin V were diminished. Together these observations imply that the stomatin-actin association is important in maintaining the structure and in modulating the function of stomatin-containing membrane rafts in red cells.  相似文献   
995.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.  相似文献   
996.
The renal UT-A urea transporters UT-A1, UT-A2, and UT-A3 are known to play an important role in the urinary concentrating mechanism. The control of the cellular localization of UT-A transporters is therefore vital to overall renal function. In the present study, we have investigated the effect of ubiquitination on UT-A plasma membrane expression in Madin-Darby canine kidney (MDCK) cell lines expressing each of the three renal UT-A transporters. Inhibition of the ubiquitin-proteasome pathway caused an increase in basal transepithelial urea flux across MDCK-rat (r)UT-A1 and MDCK-mouse (m)UT-A2 monolayers (P < 0.01, n = 3, ANOVA) and also increased dimethyl urea-sensitive, arginine vasopressin-stimulated urea flux (P < 0.05, n = 3, ANOVA). Inhibition of the ubiquitin-proteasome pathway also increased basolateral urea flux in MDCK-mUT-A3 monolayers (P < 0.01, n = 4, ANOVA) in a concentration-dependent manner. These increases in urea flux corresponded to a significant increase in UT-A transporter expression in the plasma membrane (P < 0.05, n = 3, ANOVA). Further analysis of the MDCK-mUT-A3 cell line confirmed that vasopressin specifically increased UT-A3 expression in the plasma membrane (P < 0.05, n = 3, ANOVA). However, preliminary data suggested that vasopressin produces this effect through an alternative route to that of the ubiquitin-proteasome pathway. In conclusion, our study suggests that ubiquitination regulates the plasma membrane expression of all three major UT-A urea transporters, but that this is not the mechanism primarily used by vasopressin to produce its physiological effects. ubiquitin-proteasome pathway; urea transport; membrane localization  相似文献   
997.
998.
Music, like language, is acquired effortlessly in early life and fulfils a multitude of social, cultural and emotional functions. However, those with a disorder recently termed 'congenital amusia' (CA) fail to recognise common tunes from their culture, do not hear when notes are 'out of tune' and sometimes report that music sounds like a 'din' or 'banging'. The core deficit appears to be a problem in discriminating pitch direction, a building block for the representation of melodic contour. Familial studies suggest the disorder is heritable and associated with structural differences in temporal and frontal cortices. The disorder provides a window onto the neuro-cognitive architecture of musical processing, and the possible etiologies of disordered development.  相似文献   
999.
Nonexhaustive extraction (propanol, butanol, hydroxypropyl-β-cyclodextrin [HPCD]), persulfate oxidation and biodegradability assays were employed to determine the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil. After 16 weeks incubation, greater than 89% of three-ring compounds (acenaphthene, anthracene, fluorene, and phenanthrene) and 21% to 79% of four-ring compounds (benz[a]anthracene, chrysene, fluoranthene, and pyrene) were degraded by the indigenous microorganisms under biopile conditions. No significant decrease in five- (benzo[a]pyrene, benzo[b+k]fluoranthene) and six-ring compounds (benz[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) was observed. Desorption of PAHs using propanol or butanol could not predict PAH biodegradability: low-molecular-weight PAH biodegradability was underestimated whereas high-molecular-weight PAH biodegradability was overestimated. Persulfate oxidation and HPCD extraction of creosote-contaminated soil was able to predict three- and four-ring PAH biodegradability; however, the biodegradability of five-ring PAHs was overestimated. These results demonstrate that persulfate oxidation and HPCD extraction are good predictors of PAH biodegradability for compounds with octanol-water partitioning coefficients of < 6.  相似文献   
1000.
Enumeration of benthic (bottom dwelling) and epiphytic (attached to plants) zebra and quagga mussels (Dreissena polymorpha and D. bugensis, respectively) at Lake Erie near-shore sites in fall of 2000 revealed an unexpected prevalence of the zebra mussel on submerged plants. Even at Buffalo, New York, USA, where benthic dreissenids have been 92–100% quagga mussel since 1996, zebra mussels constituted 30–61% of epiphytes numerically. This may reflect a partitioning of settling space consistent with interspecific competition. A seasonal epiphytic refugium might allow the zebra mussel to persist even where the benthos is almost exclusively quagga mussel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号