首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   11篇
  2022年   1篇
  2008年   1篇
  2000年   1篇
  1994年   1篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   6篇
  1988年   10篇
  1987年   9篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
  1962年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
91.
92.
When cells of Saccharomyces fragilis are subjected to osmotic shock, they release a limited amount of inorganic polyphosphate into the medium, which represents about 10% of the total cellular content. The osmotic shock procedure causes no substantial membrane damage, as judged from the unimpaired cell viability, limited K+ leakage and low percentage of stained cells. It is therefore suggested that this polyphosphate fraction is localized outside the plasma membrane. The released polyphosphate fraction differs from the remaining cellular polyphosphates in two respects: the mean chain length of the shock-sensitive fraction is significantly higher than that of the total cellular polyphosphates and its metabolic turnover rate, subsequent to pulsing with [32P]orthophosphate is much lower compared to the rest of the cellular polyphosphate. Incubation of intact cells with the anion exchange resin Dowex AG 1-X4 results in the release of high molecular weight polyphosphates. These results suggest that the osmotic shock-sensitive polyphosphate fraction has specific characteristics in both its cellular localization and metabolism.  相似文献   
93.
Many sugars, when added to the medium of bacteria or yeast cells, are recovered inside the cell partly as the sugar-6-phosphate and partly as the free sugar. Phosphorylation may have occurred intracellularly subsequent to transmembrane transport of the free sugar, or during transport, intimately coupled to the translocation step itself. When using nonmetabolizable sugars, isotope pulse-labeling experiments can be used to discriminate between these two possibilities. In previous papers these pulse-labeling procedures have been discussed and interpreted only on a qualitative basis. Due to experimental or systematic errors—such as adsorption of labeled substrate on the filters used to separate cells and medium—the interpretation is not always unambiguous. Under these circumstances a more detailed quantitative analysis of the kinetics of pulse-labeling could provide a warrant for the reliability of the interpretation.With non-metabolizable sugars a stationary state will usually develop, characterized by a dynamic equilibrium between the free sugar and the sugar-phosphate. In the present paper the kinetics of pulse-labeling during this stationary state are derived.  相似文献   
94.
Sorbose and 2-deoxy-d-galactose are taken up in Saccharomyces fragilis by an active transport mechanism, as indicated by the energy requirement of the process and the accumulation of free sugar against the concentration gradient. There are no indications for transport-associated phosphorylation as mechanism of energy coupling with these two sugars.The measured sugar-proton cotransport and the influx inhibition by uncouplers suggest a chemiosmotic coupling mechanism. Thus there are at least two different active transport mechanisms operative in Saccharomyces fragilis: transport-associated phosphorylation in the case of 2-deoxy-d-galactose and chemiosmotic coupling in the case of sorbose and 2-deoxy-d-galactose. The difference between the two mechanisms are discussed.Uncouplers do not stimulate downhill sorbose transport in energy-depleted cells and evoke an almost complete inhibition of efflux and of exchange transport.The differences between this sugar-proton cotransport system and similar systems in bacteria and Chlorella are discussed.  相似文献   
95.
In Kluyveromyces marxianus grown on a glucose-containing synthetic medium four different sugar transporters have been identified. In cells, harvested during the exponential phase, only the constitutive glucose/fructose carrier, probed with 6-deoxy-D-glucose or sorbose, appeared to be active. In cells from the stationary phase three proton symporters can be active, recognizing 6-deoxyglucose (a glucose/galactose carrier), sorbose (a fructose carrier) and galactosides (lactose carrier), respectively. These symporters appeared to be sensitive to catabolite inactivation. This process is induced by incubating cells in the presence of glucose, fructose or mannose. Catabolite inactivation was not influenced by the inhibitor of protein synthesis, anisomycin. Derepression of the proton/sorbose and the proton/galactoside symporters proceeded readily when cells were incubated in a medium without glucose. Activation of the proton/galactose symporter needed, in addition, the presence of specific molecules (inducers) in the medium. The activation of each of these active transport systems was inhibited by anisomycin, showing the involvement of protein synthesis.  相似文献   
96.
Fluoride inhibits photohemolysis induced by chloroaluminum phthalocyanine tetrasulfonate (AlPcS4) when it is added to dye-loaded human erythrocytes prior to light exposure (E. Ben-Hur, A. Freud, A. Canfi, and A. Livne, Int. J. Radiat. Biol. 59, 797-806, 1991). This is due to formation of a complex of F- with Al3+, leading to selective release and/or modified dye binding with some proteins so that the effective photochemical reaction is prevented. In this work we used F- as a probe to evaluate the involvement of the plasma membrane functions of Chinese hamster ovary cells in photocytotoxicity induced by chloroaluminum phthalocyanine (AlPc). Fluoride was found to protect against killing of cells photosensitized by AlPc but not AlPcS4. Plasma membrane damage induced by AlPc photosensitization was manifested by K+ leakage, membrane depolarization, inhibition of glucose and amino acid uptake, and Na+/K(+)-ATPase inactivation. The latter enzyme system was found to be the one most sensitive to inhibition by the combination of AlPc and PDT among the membrane functions studied, and was completely protected by F- in the dose range at which up to 95% of the cells are killed. Of the other membrane functions only glucose transport was slightly protected by F-. It is concluded that damage to the plasma membrane is involved in cell killing induced by AlPc photosensitization and that the plasma membrane enzyme Na+/K(+)-ATPase is a probable candidate as a critical target.  相似文献   
97.
The degradation of the nucleotides dAMP, dGMP, dCMP and dTMP and of calf thymus DNA by ozone was studied. In all cases both base and sugar moiety were degraded. Furthermore, strand breaks were induced in calf thymus DNA. Hydroxyl radicals were probably involved in the oxidation of the base in dAMP and of the deoxyribose ring, but not in the degradation of the other bases. This indicates that ozone-induced DNA damage proceeds both directly via ozone molecules and indirectly via hydroxyl radicals.  相似文献   
98.
Sorbose uptake in Saccharomyces cerevisiae, strain Delft 1, proceeds via mediated passive transport. In the cell sorbose is distributed in at least two compartments. Efflux studies showed that sorbose uptake in one of these compartments is not readily reversible. Uncouplers of oxidative phosphorylation inhibit both transport velocity and steady-state uptake level. It could be shown that these two effects are caused by different modes of action of the uncouplers. None of these two effects could be ascribed to changes of the electrochemical H+ gradient or of the intracellular pH. It is suggested that the inhibition of uptake velocity is caused by binding of the uncoupler to the sorbose translocator, thus lowering the transport activity. The uncoupler binding site is probably located at the intracellular fragment of the carrier. The second effect, reduction of the steady-state uptake level, is probably due to blocking of sorbose influx into the compartment that exhibits poor reversibility.  相似文献   
99.
Summary Barley roots fixed with OsO4 containing potassium pyroantimonate showed the presence of several types of electron opaque precipitates in the cells. Thin sections were cut from a region about 1 cm from the root tip and the electron opaque deposits analysed using EMMA-4 with KEVEX Si(Li) energy dispersive analyser. Antimony-containing deposits at the root surface associated with the mucilaginous sheath were found to contain Fe and P, and count ratios suggest constant proportions of these elements in the precipitates. Within the root cells, vacuolar deposits generally contained Os and Sb, but occasional deposits in epidermal cell vacuoles contained some Fe. Fe was also detected in nuclear deposits in endodermal cells.These findings are discussed briefly in relation to the uptake of Fe into plant roots.  相似文献   
100.
The production of phytoplankton in the three main branches andsedimentation areas of the River Rhine in the Netherlands wasanalyzed using a simulation model describing the carbon andsilicate metabolism. This model is based on data derived froma sampling programme in which river water was followed duringdownstream transport. A ‘plug-flow model’ was developed,including sky irradiance and light attenuation in the water,and integrating photosynthetic rates determined in the laboratory.On the basis of the silicate content of diatom-dominated phytoplanktonand silicate regeneration in the river bottom, changes in silicateconcentrations were simulated and found to match observed changesin dissolved silicate. Low sìlicate concentrations wereshown to restrict the maximum population density of diatoms.Depth- and time-integrated rates of photosynthesis were shownto permit multiplication of the phytoplankton at a rate of upto one doubling day–1 In the primary production periodApril-August 1988. values of 0.48–6.33 g C m–2 day–1,close to the few values reported for highly eutrophic riversand lakes, were observed. Model runs, including phytoplanktonproduction and losses, such as respiration, sedimentation andplanktonic grazing, were carried out to simulate the downstreamdevelopment of phytoplankton biomass. These simulations confirmthe view that a substantial part of the phytoplankton biomassand production is grazed or settles in the river delta despiteresidence times of only 52–97 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号