首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23158篇
  免费   2105篇
  国内免费   9篇
  2023年   75篇
  2022年   162篇
  2021年   363篇
  2020年   223篇
  2019年   296篇
  2018年   341篇
  2017年   331篇
  2016年   564篇
  2015年   903篇
  2014年   981篇
  2013年   1225篇
  2012年   1670篇
  2011年   1740篇
  2010年   1069篇
  2009年   930篇
  2008年   1371篇
  2007年   1416篇
  2006年   1331篇
  2005年   1288篇
  2004年   1295篇
  2003年   1191篇
  2002年   1115篇
  2001年   290篇
  2000年   257篇
  1999年   289篇
  1998年   339篇
  1997年   245篇
  1996年   210篇
  1995年   231篇
  1994年   223篇
  1993年   189篇
  1992年   207篇
  1991年   189篇
  1990年   199篇
  1989年   177篇
  1988年   172篇
  1987年   180篇
  1986年   145篇
  1985年   162篇
  1984年   169篇
  1983年   158篇
  1982年   155篇
  1981年   143篇
  1980年   113篇
  1979年   90篇
  1978年   83篇
  1977年   99篇
  1976年   73篇
  1975年   60篇
  1973年   55篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
971.
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ? Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP‐1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ? Src, and inhibition of EGFR controls pre‐established toxoplasmosis.  相似文献   
972.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   
973.
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.  相似文献   
974.
Mammals adapted to unpredictable and low-energy environments often evolve a “bet-hedging” life history strategy characterized by less costly reproductive outputs over a longer and slower-growing life. In contrast, species adapted to more predictable (i.e., low variation) and higher energy environments may evolve greater fecundity over a shorter and faster-growing life. We tested whether this known interspecific pattern also occurs within a species. We compared life history traits of the ringed seal (Pusa hispida) in the Canadian High Arctic to those closer to the southern limit of the species' circumpolar distribution. We found that northern seals grew slower than southern seals (Brody growth coefficient), achieved a greater asymptotic body weight (82 and 69 kg vs. 74 and 54 kg female and male, respectively), reached sexual maturity later (6.1 years vs. 4.5 years), had lower fecundity (1.8 years vs. 1.3 years interbirth interval), longer average lifespan (5 years vs. 3 years median age), and greater movements (1,269 vs. 681 km). Mating systems also likely differed with northern seals showing morphological evidence of a promiscuous mating system with potential sperm competition as indicated by greater relative testes size. The northern region was also characterized by more unpredictable environmental timing of seasonal events, such as spring sea ice breakup. Life history variation between the intraspecific groups of seals appears to agree with interspecific patterns and provides a better understanding of how species' life history parameters shift in concert with environmental conditions.  相似文献   
975.
Cylindrospermopsis (Raphidiopsis) raciborskii is an invasive, filamentous, nitrogen-fixing cyanobacterium that forms frequent blooms in freshwater habitats. While viruses play key roles in regulating the abundance, production and diversity of their hosts in aquatic ecosystems, the role(s) of viruses in the ecology of C. raciborskii is almost unexplored. Progress in this field has been hindered by the absence of a characterized virus–host system in C. raciborskii. To bridge this gap, we sequenced the genome of CrV-01T, a previously isolated cyanosiphovirus, and its host, C. raciborskii strain Cr2010. Analyses suggest that CrV-01T represents a distinct clade of siphoviruses infecting, and perhaps lysogenizing, filamentous cyanobacteria. Its genome contains unique features that include an intact CRISPR array and a 12 kb inverted duplication. Evidence suggests CrV-01T recently gained the ability to infect Cr2010 and recently lost the ability to form lysogens. The cyanobacterial host contains a CRISPR-Cas system with CRISPR spacers matching protospacers within the inverted duplication of the CrV-01T genome. Examination of metagenomes demonstrates that viruses with high genetic identity to CrV-01T, but lacking the inverted duplication, are present in C. raciborskii blooms in Australia. The unique genomic features of the CrV/Cr2010 system offers opportunities to investigate in more detail virus–host interactions in an ecologically important bloom-forming cyanobacterium.  相似文献   
976.
977.
978.
Although it has been recognized that energy metabolism and mitochondrial structure and functional activity in the immature brain differs from that of the adult, few studies have examined mitochondria specifically at the neuronal synapse during postnatal brain development. In this study, we examined the presynaptic mitochondrial proteome in mice at postnatal day 7 and 42, a period that involves the formation and maturation of synapses. Application of two independent quantitative proteomics approaches – SWATH‐MS and super‐SILAC – revealed a total of 40 proteins as significantly differentially expressed in the presynaptic mitochondria. In addition to elevated levels of proteins known to be involved in ATP metabolic processes, our results identified increased levels of mitoNEET (Cisd1), an iron‐sulfur containing protein that regulates mitochondrial bioenergetics. We found that mitoNEET overexpression plays a cell‐type specific role in ATP synthesis and in neuronal cells promotes ATP generation. The elevated ATP levels in SH‐SY5Y neuroblastoma cells were associated with increased mitochondrial membrane potential and a fragmented mitochondrial network, further supporting a role for mitoNEET as a key regulator of mitochondrial function.  相似文献   
979.
Induced pluripotent stem cells(iPSCs) were first generated by Yamanaka and colleagues over a decade ago. Since then, iPSCs have been successfully differentiated into many distinct cell types, enabling tissue-, disease-, and patientspecific in vitro modelling. Cardiovascular disease is the greatest cause of mortality worldwide but encompasses rarer disorders of conduction and myocardial function for which a cellular model of study is ideal. Although methods to differentiate iPSCs into beating cardiomyocytes(iPSC-CMs) have recently been adequately optimized and commercialized, the resulting cells remain largely immature with regards to their structure and function,demonstrating fetal gene expression, disorganized morphology, reliance on predominantly glycolytic metabolism and contractile characteristics that differ from those of adult cardiomyocytes. As such, disease modelling using iPSC-CMs may be inaccurate and of limited utility. However, this limitation is widely recognized, and numerous groups have made substantial progress in addressing this problem. This review highlights successful methods that have been developed for the maturation of human iPSC-CMs using small molecules,environmental manipulation and 3-dimensional(3 D) growth approaches.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号