首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19861篇
  免费   1701篇
  国内免费   9篇
  2023年   65篇
  2022年   140篇
  2021年   329篇
  2020年   203篇
  2019年   262篇
  2018年   295篇
  2017年   289篇
  2016年   484篇
  2015年   802篇
  2014年   883篇
  2013年   1097篇
  2012年   1533篇
  2011年   1587篇
  2010年   975篇
  2009年   842篇
  2008年   1246篇
  2007年   1302篇
  2006年   1217篇
  2005年   1196篇
  2004年   1181篇
  2003年   1096篇
  2002年   1015篇
  2001年   207篇
  2000年   164篇
  1999年   201篇
  1998年   276篇
  1997年   184篇
  1996年   151篇
  1995年   184篇
  1994年   179篇
  1993年   150篇
  1992年   124篇
  1991年   124篇
  1990年   118篇
  1989年   103篇
  1988年   104篇
  1987年   115篇
  1986年   100篇
  1985年   100篇
  1984年   99篇
  1983年   116篇
  1982年   112篇
  1981年   112篇
  1980年   90篇
  1979年   56篇
  1978年   56篇
  1977年   59篇
  1976年   51篇
  1975年   36篇
  1974年   24篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
992.
Erythrocyte invasion by the malaria merozoite is accompanied by the regulated discharge of apically located secretory organelles called micronemes. Plasmodium falciparum apical membrane antigen-1 (PfAMA-1), which plays an indispensable role in invasion, translocates from micronemes onto the parasite surface and is proteolytically shed in a soluble form during invasion. We have previously proposed, on the basis of incomplete mass spectrometric mapping data, that PfAMA-1 shedding results from cleavage at two alternative positions. We now show conclusively that the PfAMA-1 ectodomain is shed from the merozoite solely as a result of cleavage at a single site, just 29 residues away from the predicted transmembrane-spanning sequence. Remarkably, this cleavage is mediated by the same membrane-bound parasite serine protease as that responsible for shedding of the merozoite surface protein-1 (MSP-1) complex, an abundant, glycosylphosphatidylinositol-anchored multiprotein complex. Processing of MSP-1 is essential for invasion. Our results indicate the presence on the merozoite surface of a multifunctional serine sheddase with a broad substrate specificity. We further demonstrate that translocation and shedding of PfAMA-1 is an actin-independent process.  相似文献   
993.
994.
Curariform alkaloids competitively inhibit muscle acetylcholine receptors (AChR) by bridging the alpha and non-alpha subunits that form the ligand-binding site. Here we delineate bound orientations of d-tubocurarine (d-TC) and its methylated derivative metocurine using mutagenesis, ligand binding measurements, and computational methods. When tested against a series of lysine mutations in the epsilon subunit, the two antagonists show marked differences in the consequences of the mutations on binding affinity. The mutations epsilon L117K, epsilon Y111K, and epsilon L109K decrease affinity of metocurine by up to 3 orders of magnitude but only slightly alter affinity of d-TC. At the alpha subunit face of the binding site, the mutation alpha Y198T decreases affinity of both antagonists, but alpha Y198F preferentially enhances affinity of d-TC. Computation of antagonist docking orientations, based on our structural model of the alpha-epsilon site of the human AChR, indicates distinct orientations of each antagonist; the flatter metocurine fits into a pocket formed principally by the epsilon subunit, whereas the more compact d-TC spans the narrower crevasse between alpha and epsilon subunits. The side chains of epsilon Tyr-111 and epsilon Thr-117 juxtapose one of two quaternary nitrogens in metocurine but are remote from the equivalent quaternary nitrogen in d-TC, which instead closely approaches alpha Tyr-198. The different docked orientations arise through tilt of the curariform scaffold by approximately 60 degrees normal to the nitrogen-nitrogen axis, together with a 20 degrees rotation about the axis. The overall mutagenesis and computational results show that despite their similar structures, d-TC and metocurine bind in distinctly different orientations to the adult human AChR.  相似文献   
995.
The inhibitory effect of ethanol on N-methyl-d-aspartate receptors (NMDARs) is well documented in several brain regions. However, the molecular mechanisms by which ethanol affects NMDARs are not well understood. In contrast to the inhibitory effect of ethanol, phosphorylation of the NMDAR potentiates channel currents (Lu, W. Y., Xiong, Z. G., Lei, S., Orser, B. A., Dudek, E., Browning, M. D., and MacDonald, J. F. (1999) Nat. Neurosci. 2, 331-338). We have previously shown that protein kinase C activators induce tyrosine phosphorylation and potentiation of the NMDAR (Grosshans, D. R., Clayton, D. R., Coultrap, S. J., and Browning, M. D. (2002) Nat. Neurosci. 5, 27-33). We therefore hypothesized that the ethanol inhibition of NMDARs might be due to changes in tyrosine phosphorylation of NMDAR subunits. In support of this hypothesis, we found that tyrosine phosphorylation of both NR2A and NR2B subunits was significantly reduced following in situ exposure of hippocampal slices to 100 mm ethanol. Specifically, phosphorylation of tyrosine 1472 on NR2B was reduced 23.5%. These data suggest a possible mechanism by which ethanol may inhibit the NMDAR via activation of a tyrosine phosphatase. Electrophysiological studies demonstrated that ethanol inhibited NMDAR field excitatory postsynaptic potential slope and amplitude to a similar degree as previously reported by our laboratory and others (Schummers, J., Bentz, S., and Browning, M. D. (1997) Alcohol Clin. Exp. Res. 21, 404-408). Inclusion of bpV(phen), a potent phosphotyrosine phosphatase inhibitor, in the recording chamber prior to and during ethanol exposure significantly reduced the inhibitory effect of ethanol on NMDAR field excitatory postsynaptic potentials. Taken together, these data suggest that phosphatase-mediated dephosphorylation of NMDAR subunits may play an important role in mediating the inhibitory effects of ethanol on the N-methyl-D-aspartate receptor.  相似文献   
996.
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity.  相似文献   
997.
The [URE3] prion is an inactive, self-propagating, filamentous form of the Ure2 protein, a regulator of nitrogen catabolism in yeast. The N-terminal "prion" domain of Ure2p determines its in vivo prion properties and in vitro amyloid-forming ability. Here we determined the overall structures of Ure2p filaments and related polymers of the prion domain fused to other globular proteins. Protease digestion of 25-nm diameter Ure2p filaments trimmed them to 4-nm filaments, which mass spectrometry showed to be composed of prion domain fragments, primarily residues approximately 1-70. Fusion protein filaments with diameters of 14-25 nm were also reduced to 4-nm filaments by proteolysis. The prion domain transforms from the most to the least protease-sensitive part upon filament formation in each case, implying that it undergoes a conformational change. Intact filaments imaged by cryo-electron microscopy or after vanadate staining by scanning transmission electron microscopy (STEM) revealed a central 4-nm core with attached globular appendages. STEM mass per unit length measurements of unstained filaments yielded 1 monomer per 0.45 nm in each case. These observations strongly support a unifying model whereby subunits in Ure2p filaments, as well as in fusion protein filaments, are connected by interactions between their prion domains, which form a 4-nm amyloid filament backbone, surrounded by the corresponding C-terminal moieties.  相似文献   
998.
Because the MAPK pathway plays important roles in cell proliferation and inhibition of apoptosis, this pathway has emerged as a potential therapeutic target for solid tumors and leukemia. At the present time there is little information about activation of this pathway and the consequences of its inhibition in acute lymphocytic leukemia cells (ALL). In the present study, constitutive MAPK pathway activation, as evidenced by phosphorylation of ERK1 and ERK2, was observed in 8 of 8 human lymphoid cell lines and 33% (8:24) of pretreatment ALL bone marrows. Inhibition of this pathway by the MEK inhibitors CI-1040 and PD098059 induced apoptosis through a unique pathway involving dephosphorylation and aggregation of Fas-associated death domain protein followed by death receptor-independent caspase-8 activation. Jurkat cell variants lacking Fas-associated death domain protein or procaspase-8 were resistant to CI-1040-induced apoptosis, as were Jurkat or Molt3 cells treated with the O-methyl ester of the caspase-8 inhibitor N-(Nalpha-benzyloxycarbonylisoleucylglutamyl) aspartate fluoromethyl ketone. In contrast, CI-1040-induced apoptosis was unaffected by blocking anti-Fas antibody, soluble tumor necrosis factor-alpha-related apoptosis-inducing ligand decoy receptor, or transfection with cDNA encoding the anti-apoptotic Bcl-2 family member Mcl-1 or dominant negative caspase-9. Collectively, these results identify the MAPK pathway as a potential therapeutic target in ALL and delineate a mechanism by which MEK inhibition triggers apoptosis in ALL cells.  相似文献   
999.
The neurogenic Drosophila genes brainiac and egghead are essential for epithelial development in the embryo and in oogenesis. Analysis of egghead and brainiac mutants has led to the suggestion that the two genes function in a common signaling pathway. Recently, brainiac was shown to encode a UDP-N-acetylglucosamine:beta Man beta 1,3-N-acetylglucosaminyltransferase (beta 3GlcNAc-transferase) tentatively assigned a key role in biosynthesis of arthroseries glycosphingolipids and forming the trihexosylceramide, GlcNAc beta 1-3Man beta 1-4Glc beta 1-1Cer. In the present study we demonstrate that egghead encodes a Golgi-located GDP-mannose:beta Glc beta 1,4-mannosyltransferase tentatively assigned a biosynthetic role to form the precursor arthroseries glycosphingolipid substrate for Brainiac, Man beta 1-4Glc beta 1-1Cer. Egghead is unique among eukaryotic glycosyltransferase genes in that homologous genes are limited to invertebrates, which correlates with the exclusive existence of arthroseries glycolipids in invertebrates. We propose that brainiac and egghead function in a common biosynthetic pathway and that inactivating mutations in either lead to sufficiently early termination of glycolipid biosynthesis to inactivate essential functions mediated by glycosphingolipids.  相似文献   
1000.
The autolysis loop (residues 143-154 in chymotrypsinogen numbering) plays a pivotal role in determining the macromolecular substrate and inhibitor specificity of coagulation proteases. This loop in factor IXa (FIXa) has 3 basic residues (Arg143, Lys147, and Arg150) whose contribution to the protease specificity of factor IXa has not been studied. Here, we substituted these residues individually with Ala in Gla-domainless forms of recombinant factor IX expressed in mammalian cells. All mutants exhibited normal amidolytic activities toward a FIXa-specific chromogenic substrate. However, Arg143 and Lys147 mutants showed a approximately 3- to 6-fold impairment in FX activation, whereas the Arg150 mutant activated factor X normally both in the absence and presence of factor VIIIa. By contrast, Arg143 and Lys147 mutants reacted normally with antithrombin (AT) in both the absence and presence of the cofactor, heparin. However, the reactivity of the Arg150 mutant with AT was impaired 6.6-fold in the absence of heparin and 33- to 70-fold in the presence of pentasaccharide and full-length heparins. These results suggest that Arg143 and Lys147 of the autolysis loop are recognition sites for FX independent of factor VIIIa, and Arg150 is a specific recognition site for AT that can effectively interact with AT only if the serpin is in the heparin-activated conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号