首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4380篇
  免费   315篇
  国内免费   4篇
  2023年   17篇
  2022年   31篇
  2021年   64篇
  2020年   45篇
  2019年   69篇
  2018年   78篇
  2017年   64篇
  2016年   96篇
  2015年   200篇
  2014年   207篇
  2013年   260篇
  2012年   355篇
  2011年   382篇
  2010年   249篇
  2009年   216篇
  2008年   305篇
  2007年   297篇
  2006年   245篇
  2005年   266篇
  2004年   238篇
  2003年   237篇
  2002年   231篇
  2001年   56篇
  2000年   41篇
  1999年   52篇
  1998年   46篇
  1997年   31篇
  1996年   22篇
  1995年   31篇
  1994年   29篇
  1993年   21篇
  1992年   22篇
  1991年   25篇
  1990年   17篇
  1989年   14篇
  1988年   12篇
  1987年   15篇
  1986年   5篇
  1985年   7篇
  1984年   12篇
  1983年   14篇
  1982年   13篇
  1981年   10篇
  1980年   9篇
  1979年   3篇
  1978年   9篇
  1977年   9篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
排序方式: 共有4699条查询结果,搜索用时 15 毫秒
91.
Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.  相似文献   
92.
93.
Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment.  相似文献   
94.
Biotelemetry is a central tool for fisheries management, with the implantation of transmitters into animals requiring refined surgical techniques that maximize retention rates and fish welfare. Even following successful surgery, long-term post-release survival rates can vary considerably, although knowledge is limited for many species. The aim here was to investigate the post-tagging survival rates in the wild of two lowland river fish species, common bream Abramis brama and northern pike Esox lucius, following their intra-peritoneal double-tagging with acoustic transmitters and passive integrated transponder (PIT) tags. Survival over a 2-year period was assessed using acoustic transmitter data in Cox proportional hazards models. Post-tagging survival rates were lowest in the reproductive periods of both species, but in bream, fish tagged just prior to spawning actually had the highest subsequent survival rates. Pike survival was influenced by sex, with males generally surviving longer than females. PIT tag detections at fixed stations identified bream that remained active, despite loss of an acoustic transmitter signal. In these instances, loss of the acoustic signal occurred up to 215 days post-tagging and only during late spring or summer, indicating a role of elevated temperature, while PIT detections occurred between 18 and 359 days after the final acoustic detections. Biotelemetry studies must thus always consider the date of tagging as a fundamental component of study designs to avoid tagged fish having premature end points within telemetry studies.  相似文献   
95.
Neurochemical Research - Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine...  相似文献   
96.
97.
Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.  相似文献   
98.
New antibiotics with novel mechanisms of action are urgently needed to overcome the growing bacterial resistance problem faced by clinicians today. PC190723 and related compounds represent a promising new class of antibacterial compounds that target the essential bacterial cell division protein FtsZ. While this family of compounds exhibits potent antistaphylococcal activity, they have poor activity against enterococci and streptococci. The studies described herein are aimed at investigating the molecular basis of the enterococcal and streptococcal resistance to this family of compounds. We show that the poor activity of the compounds against enterococci and streptococci correlates with a correspondingly weak impact of the compounds on the self-polymerization of the FtsZ proteins from those bacteria. In addition, computational and mutational studies identify two key FtsZ residues (E34 and R308) as being important determinants of enterococcal and streptococcal resistance to the PC190723-type class of compounds.  相似文献   
99.
α-Scorpion toxins are modulators of voltage-gated Na+ channels (Navs), which bind to the receptor site 3 to inhibit the fast inactivation of the channels. MeuNaTxα-12 and MeuNaTxα-13 are two new α-scorpion toxin-like peptides identified by cDNA cloning from the scorpion Mesobuthus eupeus with unknown functions. Here, we report their recombinant production, oxidative refolding, structural and functional features. By in vitro renaturation from bacterial inclusion bodies and further purification through reverse phase high-performance liquid chromatography, we obtained high purity recombinant products with a native-like conformation identified by circular dichroism analysis. Two-electrode voltage clamp recordings on five cloned mammalian Nav subtypes (rNav1.1, rNav1.2, rNav1.4, rNav1.5, and mNav1.6) and the insect counterpart DmNav1, all expressed in Xenopus laevis oocytes, showed that these two peptides inhibited rapid inactivation of the sensitive Na+ channels with significant preference for DmNav1. The half maximal effective concentrations (EC50) of MeuNaTxα-12 and MeuNaTxα-13 for this channel are 19.95 ± 2.99 nM and 65.50 ± 7.28 nM, respectively, showing 45 and 38 folds higher affinities than for rNav1.1, the most sensitive mammalian channel among the five isoforms. Our functional data confirms that these two peptides belong to the α-like scorpion toxin group. A combined analysis of the site 3 sequences and the pharmacological data illuminates the importance of the loop LD4:S5–S6 of the channel in interacting with the toxins whereas affinity variations between MeuNaTxα-12 and MeuNaTxα-13 highlight a key functional role of a cationic side chain at position 28 of MeuNaTxα-12. Successful expression together with structural and functional characterization of these two new α-like scorpion toxins lays basis for further studies of their structure–function relationship.  相似文献   
100.
Abstract

An efficient alternative which makes use of the reliable 3J1′2′. value to derive the endocyclic torsion angle constraints is proposed in this study. Based on the information embedded in the two plots, (i) the vicinal proton-proton J-couplings, 3J1′2′., 3J1′2″., 3J2′3′., 3J2”3′ and 3J3′4′ against the pseudorotation phase angle, and (ii) 3J1′2″, 3J2′3′., 3J2″3′ and 3J3′4′ against 3J1′2′; using the calculated J-couplings obtained for a range of sugar geometries of deoxyribose ring in nucleosides and nucleotides encountered along the pseudorotation itinerary [J. van Wijk, B.D. Huckriede, J.H. Ippel and C. Altona, Methods Enzymol. 211, 286–306 (1992)], it is suggested that the vicinal 3J1′2′ possesses structural information other than the vicinal torsion angle φ1′2′. This study is divided into two parts. In Part I, a correlation diagram between the endocyclic torsion angles vi (i=0,1,2,3,4) and the restrained vicinal torsion angle φ1′2′ is obtained through the use of the J-coupling restrained molecular mechanics (JrMM) protocol. The established φ1′2′.-vi correlation shows vi can be deduced from the reliable 3J1′2′. value and it forms the basis for developing an alternative protocol to derive endocyclic torsion angle constraints. In Part II of this series, extensive testing demonstrating the validity of the JrMM protocol to derive Vi for defining the sugar geometry of solution DNA molecules is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号