首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6736篇
  免费   586篇
  国内免费   4篇
  2023年   27篇
  2022年   50篇
  2021年   126篇
  2020年   93篇
  2019年   132篇
  2018年   135篇
  2017年   116篇
  2016年   181篇
  2015年   323篇
  2014年   356篇
  2013年   422篇
  2012年   580篇
  2011年   602篇
  2010年   361篇
  2009年   327篇
  2008年   449篇
  2007年   448篇
  2006年   374篇
  2005年   399篇
  2004年   365篇
  2003年   340篇
  2002年   331篇
  2001年   82篇
  2000年   54篇
  1999年   77篇
  1998年   78篇
  1997年   47篇
  1996年   34篇
  1995年   43篇
  1994年   36篇
  1993年   30篇
  1992年   36篇
  1991年   34篇
  1990年   22篇
  1989年   17篇
  1988年   17篇
  1987年   20篇
  1986年   13篇
  1985年   13篇
  1984年   16篇
  1983年   18篇
  1982年   16篇
  1981年   11篇
  1980年   12篇
  1978年   9篇
  1977年   9篇
  1976年   6篇
  1975年   8篇
  1973年   4篇
  1971年   4篇
排序方式: 共有7326条查询结果,搜索用时 15 毫秒
991.
The spider Latrodectus hesperus Chamberlin & Ivie (Araneae: Theridiidae) was subjected to low and ultralow oxygen (ULO) treatments at different temperatures. Complete control of the spiders was achieved in 24-h ULO treatments with 0.5% O2 or lower at 1 degrees C and in a 24-h low oxygen (2%) treatment at 15 degrees C. Oxygen level and temperature greatly affected spider mortality. At 1 degrees C, as oxygen level was decreased from 2 to 0.5%, spider mortality increased from 0 to 100%. At 2% O2, as temperature was increased from 1 to 15 degrees C, spider mortality increased from 0 to 100%. Grape clusters from two table grape (Vitis spp.) cultivars, 'Thompson Seedless' and 'Flame Seedless', were subjected to the 24-h ULO treatment with 0.5% O2 at 1 degrees C. The ULO treatment had no negative effects on grape quality. Because of the relatively short treatment time, effectiveness at low storage temperature and the easily attained oxygen level, we conclude that the ULO treatment have good potential to be implemented commercially for control of black widow spiders on harvested table grapes.  相似文献   
992.
We assessed the distribution and prevalence of growth anomalies (GAs) in Acropora from French Frigate Shoals (Hawaii, USA), Johnston Atoll and Tutuila (American Samoa), developed a nomenclature for gross morphology, characterized GAs at the cellular level and obtained preliminary indices of their spatial patterns and progression within coral colonies. Acropora GAs were found in all 3 regions, but the distribution, variety and prevalence of Acropora GAs was highest in American Samoa. GAs were grouped into 7 gross morphologies (exophytic, bosselated, crateriform, nodular, vermiform, fimbriate or annular). On histology, GAs consisted of hyperplastic basal body wall (calicodermis, mesoglea and gastrodermis apposed to skeleton) with 3 distinct patterns of necrosis. There was no evidence of anaplasia or mitotic figures (common but not necessarily required morphologic indicators of neoplasia). Compared to normal tissues, GAs had significantly fewer polyps, zooxanthellae within the gastrodermis of the coenenchyme, mesenterial filaments and gonads but significantly more necrosis. On 2 colonies with GAs monitored at 2 points over 11 mo, numbers of GAs per colony increased from 0.9 to 3 times the original number seen, and significant clustering of GAs occurred within colonies. The evidence of GAs being true neoplasias (tumors) is mixed, so a cautionary approach is urged in use of morphologic terminology.  相似文献   
993.
Understanding how cooperation evolves is central to explaining some core features of our biological world. Many important evolutionary events, such as the arrival of multicellularity or the origins of eusociality, are cooperative ventures between formerly solitary individuals. Explanations of the evolution of cooperation have primarily involved showing how cooperation can be maintained in the face of free-riding individuals whose success gradually undermines cooperation. In this paper I argue that there is a second, distinct, and less well explored, problem of cooperation that I call the generation of benefit. Focusing on how benefit is generated within a group poses a different problem: how is it that individuals in a group can (at least in principle) do better than those who remain solitary? I present several different ways that benefit may be generated, each with different implications for how cooperation might be initiated, how it might further evolve, and how it might interact with different ways of maintaining cooperation. I argue that in some cases of cooperation, the most important underlying “problem” of cooperation may be how to generate benefit, rather than how to reduce conflict or prevent free-riding.  相似文献   
994.
Previously we have demonstrated the reduction of ethyl and t-butyl diketoesters 1 to the corresponding syn-(3R,5S)-dihydroxy esters 2a by Acinetobacter sp. 13874. The syn-(3R,5S)-dihydroxy ester 2a was obtained with an enantiomeric excess (e.e.) of 99% and a diastereomeric excess (de) of 63%. In this report, we identified a gene encoding desired ketoreductase III which catalyzed the diastereoselective reduction of diketoesters 1 to syn-(3R,5S)-dihydroxy esters 2a and describe cloning and expression of ketoreductase III into Escherichia coli. Cells or extracts of recombinant E. coli efficiently reduced the diketoester 1 to the corresponding syn-(3R,5S)-dihydroxy ester 2a in 99.3% yield, 100% e.e., and 99.8% de.  相似文献   
995.
The proprotein convertase PCSK9 gene is the third locus implicated in familial hypercholesterolemia, emphasizing its role in cardiovascular diseases. Loss of function mutations and gene disruption of PCSK9 resulted in a higher clearance of plasma low density lipoprotein cholesterol, likely due to a reduced degradation of the liver low density lipoprotein receptor (LDLR). In this study, we show that two of the closest family members to LDLR are also PCSK9 targets. These include the very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. Our results show that wild type PCSK9 and more so its natural gain of function mutant D374Y can efficiently degrade the LDLR, VLDLR, and ApoER2 either following cellular co-expression or re-internalization of secreted human PCSK9. Such PCSK9-induced degradation does not require its catalytic activity. Membrane-bound PCSK9 chimeras enhanced the intracellular targeting of PCSK9 to late endosomes/lysosomes and resulted in a much more efficient degradation of the three receptors. We also demonstrate that the activity of PCSK9 and its binding affinity on VLDLR and ApoER2 does not depend on the presence of LDLR. Finally, in situ hybridization show close localization of PCSK9 mRNA expression to that of VLDLR in mouse postnatal day 1 cerebellum. Thus, this study demonstrates a more general effect of PCSK9 on the degradation of the LDLR family that emphasizes its major role in cholesterol and lipid homeostasis as well as brain development.  相似文献   
996.
Pluripotency of embryonic stem cells   总被引:2,自引:0,他引:2  
  相似文献   
997.
Generation of NO by nitric oxide synthase (NOS) is implicated in gamete interaction and fertilisation. Exposure of human spermatozoa to NO donors caused mobilisation of stored Ca(2+) by a mechanism that did not require activation of guanylate cyclase but was mimicked by S-nitroso-glutathione (GSNO; an S-nitrosylating agent). Application of dithiothreitol, to reduce protein -SNO groups, rapidly reversed the actions of NO and GSNO on [Ca(2+)](i). The effects of NO, GSNO and dithiothreitol on sperm protein S-nitrosylation, assessed using the biotin switch method, closely paralleled their actions on [Ca(2+)](i). Immunofluorescent staining revealed constitutive and inducible NOS in human oviduct and cumulus (the cellular layer investing the oocyte). 4,5-diaminofluorescein (DAF) staining demonstrated production of NO by these tissues. Incubation of human sperm with oviduct explants induced sperm protein S-nitrosylation resembling that induced by NO donors and GSNO. Progesterone (a product of cumulus cells) also mobilises stored Ca(2+) in human sperm. Pre-treatment of sperm with NO greatly enhanced the effect of progesterone on [Ca(2+)](i), resulting in a prolonged increase in flagellar excursion. We conclude that NO regulates mobilisation of stored Ca(2+) in human sperm by protein S-nitrosylation, that this action is synergistic with that of progesterone and that this synergism is potentially highly significant in gamete interactions leading to fertilisation.  相似文献   
998.
O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquatic O2 sensing and the homolog of the mammalian carotid body. Intrabuccal injection of H2S in unanesthetized trout produced a dose-dependent bradycardia and increased ventilatory frequency and amplitude similar to the hypoxic response. Removal of the first, but not second, pair of gills significantly inhibited H2S-mediated bradycardia, consistent with the loss of aquatic chemoreceptors. mRNA for H2S-synthesizing enzymes, cystathionine beta-synthase and cystathionine gamma-lyase, was present in branchial tissue. Homogenized gills produced H2S enzymatically, and H2S production was inhibited by O2, whereas mitochondrial H2S consumption was O2 dependent. Ambient hypoxia did not affect plasma H2S in unanesthetized trout, but produced a PO2-dependent increase in a sulfide moiety suggestive of increased H2S production. In isolated zebrafish neuroepithelial cells, the putative chemoreceptive cells of fish, both hypoxia and H2S, produced a similar approximately 10-mV depolarization. These studies are consistent with H2S involvement in O2 sensing/signal transduction pathway(s) in chemoreceptive cells, as previously demonstrated in vascular smooth muscle. This novel mechanism, whereby H2S concentration ([H2S]) is governed by the balance between constitutive production and oxidation, tightly couples tissue [H2S] to PO2 and may provide an exquisitely sensitive, yet simple, O2 sensor in a variety of tissues.  相似文献   
999.
In this study, the role of nitric oxide (NO) in regulation of the pulmocutaneous vasculature of the toad, Bufo marinus was investigated. In vitro myography demonstrated the presence of a neural NO signaling mechanism in both arteries. Vasodilation induced by nicotine was inhibited by the soluble guanylyl cyclase (GC) inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, and the NO synthase (NOS) inhibitor, N(omega)-nitro-l-arginine (l-NNA). Removal of the endothelium had no significant effect on the vasodilation. Furthermore, pretreatment with N(5)-(1-imino-3-butenyl)-l-ornithine (vinyl-l-NIO), a more specific inhibitor of neural NOS, caused a significant decrease in the nicotine-induced dilation. In the pulmonary artery only, a combination of l-NNA and the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP((8-37)), completely blocked the nicotine-induced dilation. In both arteries, the vasodilation was also significantly decreased by glibenclamide, an ATP-sensitive K(+) (K(+)(ATP)) channel inhibitor. Levcromakalim, a K(+)(ATP) channel opener, caused a dilation that was blocked by glibenclamide in both arteries. In the pulmonary artery, NO donor-mediated dilation was significantly decreased by pretreatment with glibenclamide. The physiological data were supported by NADPH-diaphorase histochemistry and immunohistochemistry, which demonstrated NOS in perivascular nerve fibers but not the endothelium of the arteries. These results indicate that the pulmonary and cutaneous arteries of B. marinus are regulated by NO from nitrergic nerves rather than NO released from the endothelium. The nitrergic vasodilation in the arteries appears to be caused, in part, via activation of K(+)(ATP) channels. Thus, NO could play an important role in determining pulmocutaneous blood flow and the magnitude of cardiac shunting.  相似文献   
1000.
Exercise markedly influences pulse wave morphology, but the mechanism is unknown. We investigated whether effects of exercise on the arterial pulse result from alterations in stroke volume or pulse wave velocity (PWV)/large artery stiffness or reduction of pressure wave reflection. Healthy subjects (n = 25) performed bicycle ergometry. with workload increasing from 25 to 150 W for 12 min. Digital arterial pressure waveforms were recorded using a servo-controlled finger cuff. Radial arterial pressure waveforms and carotid-femoral PWV were determined by applanation tonometry. Stroke volume was measured by echocardiography, and brachial and femoral artery blood flows and diameters were measured by ultrasound. Digital waveforms were recorded continuously. Other measurements were made before and after exercise. Exercise markedly reduced late systolic and diastolic augmentation of the peripheral pressure pulse. At 15 min into recovery, stroke volume and PWV were similar to baseline values, but changes in pulse wave morphology persisted. Late systolic augmentation index (radial pulse) was reduced from 54 +/- 3.9% at baseline to 42 +/- 3.7% (P < 0.01), and diastolic augmentation index (radial pulse) was reduced from 37 +/- 1.8% to 25 +/- 2.9% (P < 0.001). These changes were accompanied by an increase in femoral blood flow (from 409 +/- 44 to 773 +/- 48 ml/min, P < 0.05) and an increase in femoral artery diameter (from 8.2 +/- 0.4 to 8.6 +/- 0.4 mm, P < 0.05). In conclusion, exercise dilates muscular arteries and reduces arterial pressure augmentation, an effect that will enhance ventricular-vascular coupling and reduce load on the left ventricle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号