首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7873篇
  免费   840篇
  国内免费   3篇
  2023年   47篇
  2022年   135篇
  2021年   271篇
  2020年   135篇
  2019年   178篇
  2018年   205篇
  2017年   196篇
  2016年   344篇
  2015年   528篇
  2014年   524篇
  2013年   539篇
  2012年   697篇
  2011年   717篇
  2010年   461篇
  2009年   359篇
  2008年   507篇
  2007年   509篇
  2006年   384篇
  2005年   377篇
  2004年   390篇
  2003年   329篇
  2002年   301篇
  2001年   56篇
  2000年   42篇
  1999年   53篇
  1998年   77篇
  1997年   32篇
  1996年   45篇
  1995年   29篇
  1994年   26篇
  1993年   18篇
  1992年   19篇
  1991年   17篇
  1990年   13篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   11篇
  1984年   17篇
  1983年   8篇
  1982年   9篇
  1981年   21篇
  1980年   14篇
  1979年   9篇
  1978年   11篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1968年   3篇
排序方式: 共有8716条查询结果,搜索用时 265 毫秒
71.
72.
73.
It is well established that the efficacy of synaptic connections can be rapidly modified by neural activity, yet how the environment and prior experience modulate such synaptic and behavioral plasticity is only beginning to be understood. Here we show in C. elegans that the broadly conserved scaffolding molecule MAGI-1 is required for the plasticity observed in a glutamatergic circuit. This mechanosensory circuit mediates reversals in locomotion in response to touch stimulation, and the AMPA-type receptor (AMPAR) subunits GLR-1 and GLR-2, which are required for reversal behavior, are localized to ventral cord synapses in this circuit. We find that animals modulate GLR-1 and GLR-2 localization in response to prior mechanosensory stimulation; a specific isoform of MAGI-1 (MAGI-1L) is critical for this modulation. We show that MAGI-1L interacts with AMPARs through the intracellular domain of the GLR-2 subunit, which is required for the modulation of AMPAR synaptic localization by mechanical stimulation. In addition, mutations that prevent the ubiquitination of GLR-1 prevent the decrease in AMPAR localization observed in previously stimulated magi-1 mutants. Finally, we find that previously-stimulated animals later habituate to subsequent mechanostimulation more rapidly compared to animals initially reared without mechanical stimulation; MAGI-1L, GLR-1, and GLR-2 are required for this change in habituation kinetics. Our findings demonstrate that prior experience can cause long-term alterations in both behavioral plasticity and AMPAR localization at synapses in an intact animal, and indicate a new, direct role for MAGI/S-SCAM proteins in modulating AMPAR localization and function in the wake of variable sensory experience.  相似文献   
74.
Before cell division in many bacteria, the ParBs spread on a large segment of DNA encompassing the origin-proximal parS site(s) to form the partition assembly that participates in chromosome segregation. Little is known about the structural organization of chromosomal partition assembly. We report solution X-ray and neutron scattering data characterizing the size parameters and internal organization of a nucleoprotein assembly formed by the mycobacterial chromosomal ParB and a 120-meric DNA containing a parS-encompassing region from the mycobacterial genome. The cross-sectional radii of gyration and linear mass density describing the rod-like ParB-DNA assembly were determined from solution scattering. A “DNA outside, protein inside” mode of partition assembly organization consistent with the neutron scattering hydrogen/deuterium contrast variation data is discussed. In this organization, the high scattering DNA is positioned towards the outer region of the partition assembly. The new results presented here provide a basis for understanding how ParBs organize the parS-proximal chromosome, thus setting the stage for further interactions with the DNA condensins, the origin tethering factors and the ParA.  相似文献   
75.
Clostridium difficile (C. diff) is one of the most common and most severe hospital-acquired infections; its consequences range from lengthened hospital stay to outright lethality. C. diff causes cellular damage through the action of two large toxins TcdA and TcdB. Recently, there has been increased effort toward developing antitoxin therapies, rather than antibacterial treatments, in hopes of mitigating the acquisition of drug resistance. To date, no analysis of the recognition mechanism of TcdA or TcdB has been attempted. Here, we use small molecule flexible docking followed by unbiased molecular dynamics to obtain a more detailed perspective on how inhibitory peptides, exemplified by two species HQSPWHH and EGWHAHT function. Using principal component analysis and generalized masked Delaunay analysis, an examination of the conformational space of TcdB in its apo form as well as forms bound to the peptides and UDP-Glucose was performed. Although both species inhibit by binding in the active site, they do so in two very different ways. The simulations show that the conformational space occupied by TcdB bound to the two peptides are quite different and provide valuable insight for the future design of toxin inhibitors and other enzymes that interact with their substrates through conformational capture mechanisms and thus work by the disruption of the protein’s intrinsic motions.  相似文献   
76.
Ecosystems - Carbon (C) fluxes among different components of plant growth are important to forest ecosystem C cycling and are strongly influenced by species composition and resource availability....  相似文献   
77.
78.
79.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   
80.
Hemp (Cannabis sativa L.) is an emerging dioecious crop grown primarily for grain, fiber, and cannabinoids. There is good evidence for medicinal benefits of the most abundant cannabinoid in hemp, cannabidiol (CBD). For CBD production, female plants producing CBD but not tetrahydrocannabinol (THC) are desired. We developed and validated high‐throughput PACE (PCR Allele Competitive Extension) assays for C. sativa plant sex and cannabinoid chemotype. The sex assay was validated across a wide range of germplasm and resolved male plants from female and monoecious plants. The cannabinoid chemotype assay revealed segregation in hemp populations, and resolved plants producing predominantly THC, predominantly CBD, and roughly equal amounts of THC and CBD. Cultivar populations that were thought to be stabilized for CBD production were found to be segregating phenotypically and genotypically. Many plants predominantly producing CBD accumulated more than the current US legal limit of 0.3% THC by dry weight. These assays and data provide potentially useful tools for breeding and early selection of hemp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号