首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   77篇
  国内免费   2篇
  2021年   6篇
  2020年   8篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   17篇
  2014年   21篇
  2013年   28篇
  2012年   21篇
  2011年   21篇
  2010年   18篇
  2009年   19篇
  2008年   20篇
  2007年   26篇
  2006年   26篇
  2005年   23篇
  2004年   17篇
  2003年   22篇
  2002年   18篇
  2001年   21篇
  2000年   23篇
  1999年   30篇
  1998年   12篇
  1997年   4篇
  1996年   9篇
  1995年   8篇
  1994年   11篇
  1993年   10篇
  1992年   24篇
  1991年   14篇
  1990年   17篇
  1989年   16篇
  1988年   9篇
  1987年   22篇
  1986年   12篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   8篇
  1981年   11篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1959年   3篇
  1869年   3篇
排序方式: 共有684条查询结果,搜索用时 996 毫秒
501.
The tree island hammock communities in the Florida Everglades provide one of many examples of self-organized wetland landscape. However, little is understood about why these elevated tree island communities have higher nutrient concentration than the surrounding freshwater marshes. Here we used stable isotopes and elemental analysis to compare dry season water limitation and soil and foliar nutrient status in upland hammock communities of 18 different tree islands located in the Shark River Slough and adjacent prairie landscapes. We observed that prairie tree islands, having a shorter hydroperiod, suffer greater water deficits during the dry season than slough tree islands by examining shifts in foliar ??13C values. We also found that prairie tree islands have lower soil total phosphorus concentration and higher foliar N/P ratio than slough tree islands. Foliar ??15N values, which often increase with greater P availability, was also found to be lower in prairie tree islands than in slough tree islands. Both the elemental N and P and foliar ??15N results indicate that the upland hammock plant communities in slough tree islands have higher amount of P available than those in prairie tree islands. Our findings are consistent with the transpiration driven nutrient harvesting chemohydrodynamic model. The water limited prairie tree islands hypothetically transpire less and harvest less P from the surrounding marshes than slough tree islands during the dry season. These findings suggest that hydroperiod is important to nutrient accumulation of tree island habitats.  相似文献   
502.
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state 19F nuclear magnetic resonance (NMR) approach was used to collect local orientational constraints from a series of CF3-phenylglycine-labeled peptide analogues in macroscopically aligned membranes. Fusion assays showed that these 19F-labels did not significantly affect peptide function. The NMR spectra were characteristic of well-behaved samples, without any signs of heterogeneity or peptide aggregation at 1:300 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We can conclude from these NMR data that FP23 has a well-defined (time-averaged) conformation and undergoes lateral diffusion in the bilayer plane, presumably as a monomer or small oligomer. Attempts to evaluate its conformation in terms of various secondary structures, however, showed that FP23 does not form any type of regular helix or β-strand. Therefore, all-atom molecular dynamics (MD) simulations were carried out using the orientational NMR constraints as pseudo-forces to drive the peptide into a stable alignment and structure. The resulting picture suggests that FP23 can adopt multiple β-turns and insert obliquely into the membrane. Such irregular conformation explains why the structure of the fusion peptide could not be reliably determined by any biophysical method so far.  相似文献   
503.
504.
505.
Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.  相似文献   
506.
507.
Almost nothing is known about atypical kinases in multicellular organisms, including parasites. Supported by information and data available for the free-living nematode, Caenorhabditis elegans, and other eukaryotes, the present article describes three RIO kinase genes, riok-1, riok-2 and riok-3, from Haemonchus contortus, one of the most important parasitic nematodes of small ruminants. Analyses of these genes and their products predict that they each play critical roles in the developmental pathways of parasitic nematodes. The findings of this review indicate prospects for functional studies of these genes in C. elegans (as a surrogate) and opportunities for the design of a novel class of nematode-specific inhibitors of RIO kinases. The latter aspect is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock.  相似文献   
508.
Entomopathogenic nematodes of the genus Heterorhabditis live in symbiosis with pathogenic Photorhabdus bacteria. Heterorhabditis nematodes are entirely dependent on these bacteria for their food source; in return, the nematodes offer the bacteria a way to infect and kill insects. For their part, Photorhabdus bacteria are lethal to a broad range of insect hosts, to other nematodes, and to other microorganisms, but not to their Heterorhabditis hosts. These nematodes offer the potential to provide a robust experimental system for the in•depth study of a mutually beneficial symbiotic relationship, with both members of the partnership accessible to molecular and genetic studies. New genomic technologies offer the possibility for this potential to be realized, and for Heterorhabditis nematodes to become a standard model system for the investigation of host•symbiote relationships. We present a perspective on the application of these technologies to nematode•bacterial symbiosis and an update on our efforts to sequence three Heterorhabditis species reported at the recent NemaSym meeting.  相似文献   
509.
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning—the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system.  相似文献   
510.
The oxygen isotope ratios of tree ring cellulose have a great potential as proxy for the oxygen isotope ratios of source water, which is related to climate. However, source water isotopic signatures can be masked by plant physiological and biochemical processes during cellulose synthesis. To minimize biochemical effects in the recording of source water, we modified the cellulose molecule to phenylglucosazone, which only has oxygen attached to carbon 3–6 (OC3–6) of the cellulose glucose moieties, thus eliminating the oxygen attached to carbon 2 of the cellulose glucose moieties (OC-2). Here we developed a method to use small amounts of inter and intra-annual tree ring cellulose for phenylglucosazone synthesis. Using this new method we tested if the oxygen isotope ratios of source water reconstructed from tree ring phenylglucosazone (δ18OswPG) and the observed source water (δ18Oswobs) would have a better agreement than those reconstructed from the tree ring cellulose molecule. Annual tree ring samples were obtained from Pinus sylvestris (1997–2003) (Finland) and Picea abies (1971–1992) (Switzerland) and intra-annual tree ring samples were obtained from Pinus radiata (October 2004–March 2006) (New Zealand), each near a meteorological station where precipitation and relative humidity (RH) were measured periodically. The δ18O of tree ring cellulose and tree ring phenylglucosazone for each of the three species were then used to back calculate the δ18O of source water according to a previous published empirical equation. As expected, the δ18O of tree ring phenylglucosazone was superior than cellulose in the reconstruction of source water available to the plant. Deviation between δ18OswPG and δ18Oswobs was in part correlated with variation in atmospheric relative humidity (RH) which was not observed for the cellulose molecule. We conclude that this new method can be applicable to inter and intra-annual tree ring studies and that the use of the tree ring phenylglucosazone will significantly improve the quality of paleoclimate studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号