首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27243篇
  免费   2285篇
  国内免费   21篇
  2023年   79篇
  2022年   166篇
  2021年   447篇
  2020年   261篇
  2019年   333篇
  2018年   418篇
  2017年   350篇
  2016年   598篇
  2015年   1038篇
  2014年   1215篇
  2013年   1460篇
  2012年   1944篇
  2011年   1973篇
  2010年   1276篇
  2009年   1103篇
  2008年   1714篇
  2007年   1782篇
  2006年   1629篇
  2005年   1589篇
  2004年   1603篇
  2003年   1539篇
  2002年   1412篇
  2001年   283篇
  2000年   192篇
  1999年   310篇
  1998年   360篇
  1997年   269篇
  1996年   224篇
  1995年   230篇
  1994年   239篇
  1993年   229篇
  1992年   189篇
  1991年   187篇
  1990年   160篇
  1989年   148篇
  1988年   164篇
  1987年   137篇
  1986年   138篇
  1985年   171篇
  1984年   172篇
  1983年   180篇
  1982年   206篇
  1981年   192篇
  1980年   169篇
  1979年   115篇
  1978年   118篇
  1977年   97篇
  1976年   99篇
  1975年   76篇
  1974年   80篇
排序方式: 共有10000条查询结果,搜索用时 429 毫秒
991.
Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in situ characterization of their evolution has never been achieved at the nanoscale. It is reported here with in situ imaging, combined with density functional theory of the elastic changes of a 2D titanium carbide (Ti3C2Tx) based electrode in direction normal to the basal plane (electrode surface) during alkaline cation intercalation/extraction. 2D carbides, known as MXenes, are promising new materials for supercapacitors and various kinds of batteries, and understanding the coupling between their mechanical and electrochemical properties is therefore necessary. The results show a strong correlation between the cations content and the out‐of‐plane elastic modulus. This strategy enables identifying the preferential intercalation pathways within a single particle, which is important for understanding ionic transport in these materials.  相似文献   
992.
We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.  相似文献   
993.
994.
Species are the most commonly recognised unit for conservation management, yet significant variation can exist below the level of taxonomic recognition and there is a lack of consensus around how a species might be defined. This definition has particular relevance when species designations are used to apportion conservation effort and when definitions might be made through legislation. Here, we use microsatellite DNA analyses to test the proposition that the last remaining populations of the endangered grassland earless dragon (Tympanocryptis pinguicolla) harbour substantial cryptic genetic variation. Our study provides strong evidence that long historical isolation and the recent impacts of urbanization, have led to genetic differentiation in microsatellite DNA allele frequencies and high numbers of private alleles among three genetic clusters. This differentiation is partially concordant with previous mitochondrial DNA analyses, which show the two regions (Canberra and Monaro) where this species exists, to be reciprocally monophyletic, but differs through the identification of a third genetic cluster that splits a northern Canberra cluster from that of southern Canberra. Our data also identify a stark contrast in population genetic structure between clusters such that high levels of genetic structure are evident in the highly urbanised Canberra region but not in the largely rural Monaro region. We conclude that this species, like many reptiles, harbours considerable cryptic variation and currently comprises three distinct and discrete units. These units could be classified as separate species for the purpose of conservation under the relevant Australian and international Acts drawing management appropriate to that status.  相似文献   
995.
The intestine is a common site for a variety of pathogenic infections. Helminth infections continue to be major causes of disease worldwide, and are a significant burden on health care systems. Lysine methyltransferases are part of a family of novel attractive targets for drug discovery. SETD7 is a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax (SET) domain-containing family of lysine methyltransferases, and has been shown to methylate and alter the function of a wide variety of proteins in vitro. A few of these putative methylation targets have been shown to be important in resistance against pathogens. We therefore sought to study the role of SETD7 during parasitic infections. We find that Setd7 -/- mice display increased resistance to infection with the helminth Trichuris muris but not Heligmosomoides polygyrus bakeri. Resistance to T. muris relies on an appropriate type 2 immune response that in turn prompts intestinal epithelial cells (IECs) to alter differentiation and proliferation kinetics. Here we show that SETD7 does not affect immune cell responses during infection. Instead, we found that IEC-specific deletion of Setd7 renders mice resistant to T. muris by controlling IEC turnover, an important aspect of anti-helminth immune responses. We further show that SETD7 controls IEC turnover by modulating developmental signaling pathways such as Hippo/YAP and Wnt/β-Catenin. We show that the Hippo pathway specifically is relevant during T. muris infection as verteporfin (a YAP inhibitor) treated mice became susceptible to T. muris. We conclude that SETD7 plays an important role in IEC biology during infection.  相似文献   
996.
BackgroundAntiretroviral-based interventions for HIV-1 prevention, including antiretroviral therapy (ART) to reduce the infectiousness of HIV-1 infected persons and pre-exposure prophylaxis (PrEP) to reduce the susceptibility of HIV-1 uninfected persons, showed high efficacy for HIV-1 protection in randomized clinical trials. We conducted a prospective implementation study to understand the feasibility and effectiveness of these interventions in delivery settings.ConclusionsIntegrated delivery of time-limited PrEP until sustained ART use in African HIV-1-serodiscordant couples was feasible, demonstrated high uptake and adherence, and resulted in near elimination of HIV-1 transmission, with an observed HIV incidence of <0.5% per year compared to an expected incidence of >5% per year.  相似文献   
997.
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age‐related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size‐dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex‐change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.  相似文献   
998.
The influence of climate change on the fitness of wild populations is often studied in the context of the spring onset of the reproductive season. This focus is relevant for climate influences on reproductive success, but neglects other fitness‐relevant periods (e.g., autumn preparation for overwintering). We examined variation in climate variables (temperature, rainfall, snowfall, and snowpack) across the full annual cycle of Columbian ground squirrels (Urocitellus columbianus) for 21 years. We investigated seasonal climate variables that were associated with fitness variables, climate variables that exhibited directional changes across the study period, and finally observed declines in fitness (?0.03 units/year; total decline = 37%) that were associated with directional changes in climate variables. Annual fitness of adult female ground squirrels was positively associated with spring temperature (= 0.69) and early summer rainfall (= 0.56) and negatively associated with spring snow conditions (= ?0.44 to ?0.66). Across the 21 years, spring snowmelt has become significantly delayed (= 0.48) and summer rainfall became significantly reduced (= ?0.53). Using a standardized partial regression model, we found that directional changes in the timing of spring snowmelt and early summer rainfall (i.e., progressively drier summers) had moderate influences on annual fitness, with the latter statistically significant (ρ = ?0.314 and 0.437, respectively). The summer period corresponds to prehibernation fattening of young and adult ground squirrels. Had we focused on a single point in time (viz. the onset of the breeding season), we would have underestimated the influences of climate change on our population. Rather, we obtained a comprehensive understanding of the influences of climate change on individual fitness by investigating the full lifecycle.  相似文献   
999.
Granivorous rodent populations in deserts are primarily regulated through precipitation‐driven resource pulses rather than pulses associated with mast‐seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast‐seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave–Great Basin Desert transition zone. In a 5‐year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush‐dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush‐dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush‐dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource‐rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource‐poor home ranges were larger (< 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast is a key resource regulating populations of kangaroo rats in this ecosystem.  相似文献   
1000.
Streptococcus pneumoniae bacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号