首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11387篇
  免费   1128篇
  国内免费   3篇
  2023年   48篇
  2022年   112篇
  2021年   228篇
  2020年   99篇
  2019年   152篇
  2018年   185篇
  2017年   171篇
  2016年   310篇
  2015年   475篇
  2014年   520篇
  2013年   616篇
  2012年   884篇
  2011年   881篇
  2010年   563篇
  2009年   516篇
  2008年   725篇
  2007年   702篇
  2006年   622篇
  2005年   652篇
  2004年   661篇
  2003年   589篇
  2002年   597篇
  2001年   138篇
  2000年   119篇
  1999年   136篇
  1998年   148篇
  1997年   104篇
  1996年   100篇
  1995年   96篇
  1994年   84篇
  1993年   92篇
  1992年   68篇
  1991年   70篇
  1990年   84篇
  1989年   86篇
  1988年   68篇
  1987年   51篇
  1986年   54篇
  1985年   47篇
  1984年   56篇
  1983年   63篇
  1982年   57篇
  1981年   50篇
  1980年   50篇
  1979年   32篇
  1978年   37篇
  1977年   36篇
  1975年   24篇
  1973年   28篇
  1971年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Mutations in the COL4A5 gene, located at Xq22, cause Alport syndrome (AS), a nephritis characterized by progressive deterioration of the glomerular basement membrane and usually associated with progressive hearing loss. We have identified a novel mutation, L1649R, present in 9 of 121 independently ascertained families. Affected males shared the same haplotype of eight polymorphic markers tightly linked to COL4A5, indicating common ancestry. Genealogical studies place the birth of this ancestor >200 years ago. The L1649R mutation is a relatively common cause of Alport syndrome in the western United States, in part because of the rapid growth and migratory expansion of mid-nineteenth-century pioneer populations carrying the gene. L1649R affects a highly conserved residue in the NC1 domain, which is involved in key inter- and intramolecular interactions, but results in a relatively mild disease phenotype. Renal failure in an L1649R male typically occurs in the 4th or 5th decade and precedes the onset of significant hearing loss by approximately 10 years.  相似文献   
122.
The two families of the order Apiales (Apiaceae and Araliaceae) represent a classic example of the difficulty in understanding evolutionary relationships between tropical-temperate family pairs. In Apiales, this problem is further compounded by phylogenetic confusion at almost every taxonomic level, including ordinal, interfamilial, and infrafamilial, due largely to difficulties in understanding trends in morphological evolution. Phylogenetic analyses of rbcL sequences were employed to resolve relationships at the ordinal and familial levels. The results of the ordinal analysis confirm the placement of Apiales in an expanded subclass Asteridae as the sister group to Pittosporaceae, and refute the traditional alliance of Apiales with Cornales and Rosidae. This study has also resolved relationships of a number of enigmatic genera, suggesting, for example, that Melanophylla, Aralidium, Griselinia, and Toricellia are close relatives of Apiales. Clarification of phylogenetic relationships has concomitantly provided insights into trends of morphological evolution, and suggests that the ancestral apialean taxon was probably bicarpellate, simple-leaved, woody, and paleotropical. Phylogenetic analysis at the family level suggests that apiaceous subfamily Hydrocotyloideae, often envisioned as an intermediate group between Apiaceae and Araliaceae, is polyphyletic, with some hydrocotyloids closely allied with Araliaceae rather than Apiaceae. With the exception of some hydrocotyloids, Apiaceae appear to be monophyletic. The relationship between Apiaceae and Araliaceae remains problematic. Although the shortest rbcL trees suggest that Apiaceae are derived from within a paraphyletic Araliaceae, this result is only weakly supported.  相似文献   
123.
The paper reports the variability of replicate measurements for soluble protein and some enzyme activities in batch and continuous culture of S. cerevisiae. The measurement variability in these assays depended on the measured concentration and could be represented as a standard deviation proportional to the measured value.The support of the ESPRC and BBSRC through the Interdisciplinary Research Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine, and through the Advanced Centre for Biochemical Engineering, University College London is gratefully acknowledged.  相似文献   
124.
125.
Abstract Horizontal gene transfer among microbial populations has been assumed to occur in the environment, yet direct observations of this phenomenon are rare or limited to observations where the mechanism(s) could not be explicitly determined. Here we demonstrate the transfer of exogenous plasmid DNA to members of indigenous marine bacterial populations by natural transformation, the first report of this process for any natural microbial community. Ten percent of marine bacterial isolates examined were transformed by plasmid DNA while 14% were transformed by chromosomal DNA. Transformation of mixed marine microbial assemblages was observed in 5 of 14 experiments. In every case, acquisition of the plasmid by members of the indigenous flora was accompanied by modification (probably from genetic rearrangement or methylation) that altered its restriction enzyme digestion pattern. Estimation of transformation rates in estuarine environments based upon the distribution of competency and transformation frequencies in isolates and mixed populations ranged from 5 × 10−4 to 1.5 transformants/1 day. Extrapolation of these rates to ecosystem scales suggests that natural transformation may be an important mechanism for plasmid transfer among marine bacterial communities.  相似文献   
126.
We have produced mutations in a cloned Escherichia coli 23S rRNA gene at positions G2252 and G2253. These sites are protected in chemical footprinting studies by the 3' terminal CCA of P site-bound tRNA. Three possible base changes were introduced at each position and the mutations produced a range of effects on growth rate and translational accuracy. Growth of cells bearing mutations at 2252 was severely compromised while the only mutation at 2253 causing a marked reduction in growth rate was a G to C transversion. Most of the mutations affected translational accuracy, causing increased readthrough of UGA, UAG and UAA nonsense mutations as well as +1 and -1 frameshifting in a lacZ reporter gene in vivo. C2253 was shown to act as a suppressor of a UGA nonsense mutation at codon 243 of the trpA gene. The C2253 mutation was also found not to interact with alleles of rpsL coding for restrictive forms of ribosomal protein S12. These results provide further evidence that nucleotides localized to the P site in the 50S ribosomal subunit influence the accuracy of decoding in the ribosomal A site.  相似文献   
127.
Syntrophic degradation of normal- and branched-chain fatty acids with 4 to 9 carbons was investigated with a mesophilic syntrophic isobutyrate-butyrate-degrading triculture consisting of the non-spore-forming, syntrophic, fatty acid-degrading, gram-positive rod-shaped strain IB, Methanobacterium formicicum T1N, and Methanosarcina mazei T18. This triculture converted butyrate and isobutyrate to methane and converted valerate and 2-methylbutyrate to propionate and methane. This triculture also degraded caproate, 4-methylvalerate, heptanoate, 2-methylhexanoate, caprylate, and pelargoate. During the syntrophic conversion of isobutyrate and butyrate, a reversible isomerization between butyrate and isobutyrate occurred; isobutyrate and butyrate were isomerized to the other isomeric form to reach nearly equal concentrations and then their concentrations decreased at the same rates. Butyrate was an intermediate of syntrophic isobutyrate degradation. When butyrate was degraded in the presence of propionate, 2-methylbutyrate was synthesized from propionate and isobutyrate formed from butyrate. During the syntrophic degradation of valerate, isobutyrate, butyrate, and 2-methylbutyrate were formed and then degraded. During syntrophic degradation of 2-methylbutyrate, isobutyrate and butyrate were formed and then degraded.  相似文献   
128.
Effects of substratum morphology on cell physiology   总被引:3,自引:0,他引:3  
Among the host of substratum properties that affect animal cell behavior, surface morphology has received relatively little attention. The earliest effect of surface morphology on animal cells was discovered almost a century ago when it was found that cells became oriented in response to the underlying topography. This phenomenon is now commonly known as contact guidance. From then until very recentrly, little progress has been made in understanding the role of surface morphology on cell behavior, primarily due to a lack of defined surfaces with uniform morphologies. This problem has been solved recently with the development of photolithographic techniques to prepare substrata with well defined and uniform surface morphologies. Availability of such surfaces has facilitated systematic in vitro experiments to study influence of surface morphology on diverse cell physiological aspects such as adhesion, growth, and function. For example, these studies have shown that surfaces with uniform multipls parallel grooves can enhance cell adhesion by confining cells in grooves and by mechanically interlocking them. Several independent studies have demosterated that cell shape is a major determinant of cell growth and function. Because surface morphology has been shown to modulate the extent of cell spreading and cell shape, its effects on cell growth and function appear to be mediated via this biological coupling between cell shape and function. New evidence in the cell biology literature is emerging to suggest that surface morphology could affect other cell behavioral properties such as post-translational modifications. Further elucidation of such effects will enable better designs for implant and cell culture substrata.  相似文献   
129.
130.
An F2 oat population was produced by crossing the diploid (n=7) species Avena strigosa (CI 3815) with A. wiestii (CI 1994), resistant and susceptible, respectively, to 40 isolates of Puccinia coronata, the causal agent of crown rust. Eighty-eight F2 individuals were used to construct an RFLP linkage map representing the A genome of cultivated hexaploid oat. Two hundred and eight RFLP loci have been placed into 10 linkage groups. This map covers 2416 cM, with an average of 12 cM between RFLP loci. Eighty-eight F3 lines, derived from F2 individuals used to construct the map, were screened for resistance to 9 isolates of P. coronata. One locus, Pca, was found to confer a dominant resistance phenotype to isolates 203, 258, 263, 264B, 290, 298, 325A, and 345. Pca also conferred resistance to isolate 276; however, an unlinked second gene may also be involved.Journal Paper No. 15143 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3134 and 2447  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号