首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6535篇
  免费   636篇
  国内免费   3篇
  7174篇
  2023年   46篇
  2022年   121篇
  2021年   215篇
  2020年   116篇
  2019年   131篇
  2018年   172篇
  2017年   123篇
  2016年   217篇
  2015年   407篇
  2014年   425篇
  2013年   506篇
  2012年   645篇
  2011年   567篇
  2010年   323篇
  2009年   285篇
  2008年   413篇
  2007年   395篇
  2006年   362篇
  2005年   304篇
  2004年   282篇
  2003年   241篇
  2002年   196篇
  2001年   49篇
  2000年   29篇
  1999年   34篇
  1998年   59篇
  1997年   36篇
  1996年   25篇
  1995年   19篇
  1994年   29篇
  1993年   19篇
  1992年   23篇
  1991年   21篇
  1990年   20篇
  1988年   10篇
  1987年   16篇
  1986年   9篇
  1985年   11篇
  1984年   13篇
  1982年   17篇
  1981年   15篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1976年   10篇
  1974年   8篇
  1973年   11篇
  1972年   10篇
  1971年   12篇
  1969年   8篇
排序方式: 共有7174条查询结果,搜索用时 0 毫秒
991.
Surface proteins are central to the cell''s ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.Open in a separate windowClick here to view.(76M, flv)  相似文献   
992.
Nucleophilic sites in the paired variable domains of the light and heavy chains (VL and VH domains) of Ig can catalyze peptide bond hydrolysis. Amyloid beta (Abeta)-binding Igs are under consideration for immunotherapy of Alzheimer disease. We searched for Abeta-hydrolyzing human IgV domains (IgVs) in a library containing a majority of single chain Fv clones mimicking physiological VL-VH-combining sites and minority IgV populations with nonphysiological structures generated by cloning errors. Random screening and covalent selection of phage-displayed IgVs with an electrophilic Abeta analog identified rare IgVs that hydrolyzed Abeta mainly at His14-Gln15. Inhibition of IgV catalysis and irreversible binding by an electrophilic hapten suggested a nucleophilic catalytic mechanism. Structural analysis indicated that the catalytic IgVs are nonphysiological structures, a two domain heterodimeric VL (IgVL2-t) and single domain VL clones with aberrant polypeptide tags (IgVL-t'). The IgVs hydrolyzed Abeta at rates superior to naturally occurring Igs by 3-4 orders of magnitude. Forced pairing of the single domain VL with VH or VL domains resulted in reduced Abeta hydrolysis, suggesting catalysis by the unpaired VL domain.Angstrom level amino acid displacements evident in molecular models of the two domain and unpaired VL domain clones explain alterations of catalytic activity. In view of their superior catalytic activity, the VL domain IgVs may help attain clearance of medically important antigens more efficiently than natural Igs.  相似文献   
993.
Lentiviral vectors effectively transduce both dividing and non-dividing cells and stably integrate into the genome of the host cell. In this study, we evaluated the usefulness of a lentiviral system for genetic modulation of primary human hepatocyte cultures. Infection with GFP-expressing lentivectors shows that Huh7 and HepG2 cell lines, as well as primary cultures of human hepatocytes, are efficiently transduced by lentiviral vectors. Real-time RT-PCR analyses demonstrate that infection with lentivectors does not alter hepatic hallmarks such as the expression of the nuclear receptors CAR, PXR, RXR alpha, or HNF4 alpha, or expression of the secretory protein, albumin. Additionally, infected hepatocytes retain the capacity for CYP3A4 induction in response to treatment with phenobarbital, a uniquely sensitive indicator of hepatic differentiation status. Lentivectors may be used for both over-expression and knockdown analyses in primary hepatocytes, as demonstrated in this study by >200-fold CAR over-expression and knockdown of CAR to less than 40% of endogenous levels, with corresponding effects on CYP2B6 expression. In summary, lentiviral vectors provide a novel methodology by which primary human hepatocytes may be stably genetically manipulated, with minimal effects on the differentiated hepatic phenotype. These approaches offer considerable advantage over current methodologies, providing a valuable alternative for use in pharmacological and toxicological investigations involving primary human hepatocyte models and potentially for cell-based therapeutics to treat hepatic dysfunction in vivo.  相似文献   
994.
The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.  相似文献   
995.
Wood charcoal analysis from Kovacevo in southwest Bulgaria, one of the earliest Neolithic sites in southeastern Europe, provided information about the first stages of anthropogenic impact on vegetation during the Early Neolithic (6159–5630 cal b.c.). Deciduous oak was the most abundant and frequently used taxon in the wood charcoal assemblages. Cornus charcoal was also abundant, probably connected with the use of its twigs as building material in wattle and daub structures. The dominant deciduous oak forest was opened during the Kovacevo I period, as shown by evidence from the Kovacevo Ia and Kovacevo Ib occupation phases. Other types of vegetation, like Black pine (Pinus nigra) woodland, riverine forests and some sub-Mediterranean elements, were used only sporadically, indicating high and sustained availability of wood resources in the oak forests. Anthropogenic impacts were gradual, a pattern that matches contemporary studies elsewhere in the region.  相似文献   
996.
Contact-dependent growth inhibition (CDI) is a phenomenon by which bacterial cell growth is regulated by direct cell-to-cell contact via the CdiA/CdiB two-partner secretion system. Characterization of mutants resistant to CDI allowed us to identify BamA (YaeT) as the outer membrane receptor for CDI and AcrB as a potential downstream target. Notably, both BamA and AcrB are part of distinct multi-component machines. The Bam machine assembles outer membrane beta-barrel proteins into the outer membrane and the Acr machine exports small molecules into the extracellular milieu. We discovered that a mutation that reduces expression of BamA decreased binding of CDI+ inhibitor cells, measured by flow cytometry with fluorescently labelled bacteria. In addition, alpha-BamA antibodies, which recognized extracellular epitopes of BamA based on immunofluorescence, specifically blocked inhibitor-target cells binding and CDI. A second class of CDI-resistant mutants identified carried null mutations in the acrB gene. AcrB is an inner membrane component of a multidrug efflux pump that normally forms a cell envelope-spanning complex with the membrane fusion protein AcrA and the outer membrane protein TolC. Strikingly, the requirement for the BamA and AcrB proteins in CDI is independent of their multi-component machines, and thus their role in the CDI pathway may reflect novel, import-related functions.  相似文献   
997.
Mathematical model reduction is a long-standing technique used both to gain insight into model subprocesses and to reduce the computational costs of simulation and analysis. A reduced model must retain essential features of the full model, which, traditionally, have been the trajectories of certain state variables. For biological clocks, timing, or phase, characteristics must be preserved. A key performance criterion for a clock is the ability to adjust its phase correctly in response to external signals. We present a novel model reduction technique that removes components from a single-oscillator clock model and discover that four feedback loops are redundant with respect to its phase response behavior. Using a coupled multioscillator model of a circadian clock, we demonstrate that by preserving the phase response behavior of a single oscillator, we preserve timing behavior at the multioscillator level.  相似文献   
998.
Aim To examine the hypothesis raised by Graham S. Hardy that Pleistocene glacial cycles suffice to explain divergence among lineages within the endemic New Zealand speckled skink, Oligosoma infrapunctatum Boulenger. Location Populations were sampled from across the entire range of the species, on the North and South Islands of New Zealand. Methods We sequenced the mitochondrial genes ND2 (550 bp), ND4 + tRNAs (773 bp) and cytochrome b (610 bp) of 45 individuals from 21 locations. Maximum likelihood, maximum parsimony and Bayesian methods were used for phylogenetic reconstruction. The Shimodaira–Hasegawa test was used to examine hypotheses about the taxonomic status of morphologically distinctive populations. Results Our analysis revealed four strongly supported clades within O. infrapunctatum. Clades were largely allopatric, except on the west coast of the South Island, where representatives from all four clades were found. Divergences among lineages within the species were extremely deep, reaching over 5%. Two contrasting phylogeographical patterns are evident within O. infrapunctatum. Main conclusions The deep genetic divisions we found suggest that O. infrapunctatum is a complex of cryptic species which diverged in the Pliocene, contrary to the existing Pleistocene‐based hypothesis. Although Pleistocene glacial cycles do not underlie major divergences within this species, they may be responsible for the shallower phylogeographical patterns that are found within O. infrapunctatum, which include a radiation of haplotypes in the Nelson and Westland regions.  相似文献   
999.
This essay examines the historical significance of an APS classic paper that is freely available online:  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号