首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18189篇
  免费   1487篇
  国内免费   368篇
  20044篇
  2024年   34篇
  2023年   146篇
  2022年   405篇
  2021年   592篇
  2020年   403篇
  2019年   476篇
  2018年   566篇
  2017年   435篇
  2016年   633篇
  2015年   1070篇
  2014年   1195篇
  2013年   1335篇
  2012年   1693篇
  2011年   1566篇
  2010年   953篇
  2009年   816篇
  2008年   1126篇
  2007年   1024篇
  2006年   887篇
  2005年   780篇
  2004年   778篇
  2003年   625篇
  2002年   501篇
  2001年   295篇
  2000年   231篇
  1999年   232篇
  1998年   148篇
  1997年   93篇
  1996年   74篇
  1995年   79篇
  1994年   80篇
  1993年   58篇
  1992年   98篇
  1991年   86篇
  1990年   64篇
  1989年   52篇
  1988年   41篇
  1987年   29篇
  1986年   31篇
  1985年   29篇
  1984年   21篇
  1983年   21篇
  1982年   22篇
  1981年   19篇
  1980年   28篇
  1979年   24篇
  1977年   19篇
  1976年   14篇
  1975年   14篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   
992.
Deficiency in DNA ligase I, encoded by CDC9 in budding yeast, leads to the accumulation of unligated Okazaki fragments and triggers PCNA ubiquitination at a non-canonical lysine residue. This signal is crucial to activate the S phase checkpoint, which promotes cell cycle delay. We report here that a pol30-K107 mutation alleviated cell cycle delay in cdc9 mutants, consistent with the idea that the modification of PCNA at K107 affects the rate of DNA synthesis at replication forks. To determine whether PCNA ubiquitination occurred in response to nicks or was triggered by the lack of PCNA-DNA ligase interaction, we complemented cdc9 cells with either wild-type DNA ligase I or a mutant form, which fails to interact with PCNA. Both enzymes reversed PCNA ubiquitination, arguing that the modification is likely an integral part of a novel nick-sensory mechanism and not due to non-specific secondary mutations that could have occurred spontaneously in cdc9 mutants. To further understand how cells cope with the accumulation of nicks during DNA replication, we utilized cdc9-1 in a genome-wide synthetic lethality screen, which identified RAD59 as a strong negative interactor. In comparison to cdc9 single mutants, cdc9 rad59Δ double mutants did not alter PCNA ubiquitination but enhanced phosphorylation of the mediator of the replication checkpoint, Mrc1. Since Mrc1 resides at the replication fork and is phosphorylated in response to fork stalling, these results indicate that Rad59 alleviates nick-induced replication fork slowdown. Thus, we propose that Rad59 promotes fork progression when Okazaki fragment processing is compromised and counteracts PCNA-K107 mediated cell cycle arrest.  相似文献   
993.
This study was conducted to investigate the efficacy of the simultaneous application of near-infrared (NIR) heating and UV irradiation for reducing populations of food-borne pathogens, including Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in red pepper powder and to clarify the mechanisms of the lethal effect of the NIR-UV combined treatment. Also, the effect of the combination treatment on quality was determined by measuring changes in color and pungency constituents. Simultaneous NIR-UV combined treatment for 5 min achieved 3.34- and 2.78-log CFU reductions in S. Typhimurium and E. coli O157:H7, respectively, which involved 1.86- and 1.31-log CFU reductions, respectively, which were attributed to the synergistic effect. Through qualitative and quantitative analyses, damage to the cell envelope was identified as the main factor contributing to the synergistic lethal effect of NIR-UV combined treatment. Color values and capsaicin and dihydrocapsaicin content of NIR-UV simultaneously treated red pepper powder were not significantly (P > 0.05) different from those of untreated samples. These results suggest that simultaneous application of NIR and UV treatment can be effectively used to control food-borne pathogens in powdered red pepper without affecting quality.  相似文献   
994.
Fan Kang  Stephen Rawsthorne 《Planta》1996,199(2):321-327
The aim of this work was to investigate the partitioning of imported glucose 6-phosphate (Glc6P) to starch and fatty acids, and to CO2 via the oxidative pentose phosphate pathway (OPPP) in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). The ability of the isolated plastids to utilize concurrently supplied substrates and the effects of these substrate combinations on the Glc6P partitioning were also assessed. The relative fluxes of carbon from Glc6P to starch, fatty acids, and to CO2 via the OPPP were close to 2∶1∶1 when Glc6P was supplied alone. Under these conditions NADPH generated via the OPPP was greater than that required by the concurrent rate of fatty acid synthesis. Fatty acid synthesis was unaffected by the presence or absence of exogenous NADH and/or NADPH and the requirement of fatty acid synthesis for reducing power is therefore met entirely by intraplastidial metabolism. When Glc6P was supplied in the presence of either pyruvate or pyruvate and acetate, the total flux from these metabolites to fatty acids was up to threefold greater than that from either Glc6P or pyruvate when they were supplied singly. In these experiments there was little competition between Glc6P and pyruvate in fatty acid synthesis and the flux to starch was unchanged. This implies that the starch and fatty acid biosynthesis pathways did not compete for the exogenously supplied ATP on which they were strongly dependent. When Glc6P and pyruvate were provided together, the NADPH generated by the OPPP pathway was less than that required by the concurrent rate of fatty acid synthesis. This suggests that the metabolism of exogenous Glc6P via the OPPP can contribute to the NADPH demand created during fatty acid synthesis but it also indicates that other intraplastidial sources of reducing power must be available under the in-vitro conditions used.  相似文献   
995.
The present study was undertaken to examine the effect of l-ascorbic acid (LAA) on the growth of HL-60 promyelocytic leukemia cells, besides induction of apoptosis. LAA (≥10-4?M) was found to markedly inhibit the proliferation of HL-60 in liquid culture and clonogenicity in semisolid culture. Moreover, LAA-treated HL-60 showed activity to produce chemiluminescence and expressed CD 66b cell surface antigens, indicating that LAA induces the differentiation of HL-60 mainly into granulocytes. The results are supported by morphological changes of LAA-treated HL-60 into segmented neutrophils. Therefore, the inhibitory effect of LAA on the growth of HL-60 cells seems to arise from the induction of differentiation. To assess the potential role of LAA, cells were exposed to oxygen radical scavengers in the absence or presence of LAA. Catalase abolished and superoxide dismutase promoted LAA-induced differentiation of HL-60. Thus, H2O2 produced as a result of LAA treatment seems to play a major role in induction of HL-60 differentiation.  相似文献   
996.
Inhibin and activin are members of the transforming growth factor beta (TGF-beta) family of ligands produced and secreted primarily by the gonads and adrenals. Inhibin-null (INH(-/-)) mice develop gonadal tumors and-when gonadectomized-adrenocortical carcinoma. The mechanisms leading to adrenal tumorigenesis have been proposed to involve the lack of a gonadal factor and/or a compensatory increase in gonadotropins. In order to achieve elevation of gonadotropins without the concomitant loss of a gonadal hormone, we crossed INH(-/-) mice with a transgenic mouse strain that has chronically elevated luteinizing hormone (LH) levels (LH-CTP). Compound INH(-/-)-LH-CTP mice die within 6 weeks of age from severe cancer cachexia induced by large, activin-secreting ovarian tumors. Unexpectedly, INH(-/-)-LH-CTP mice not only fail to develop adrenal tumors but have smaller adrenals, with a regressed x zone, indicating that elevated LH levels are not sufficient to induce adrenal tumor formation. However, following gonadectomy, INH(-/-)-LH-CTP mice develop large, sex steroid-producing adrenal tumors that arise from the x zone, indicating a growth-promoting effect of high levels of LH on the adrenal cortex in the absence of ovarian tumors. In addition, in vivo and in vitro data indicate that activin induces apoptosis specifically in the adrenal x zone. The restricted expression of activin receptor subunits and Smad2 in cells of the adrenal x zone, together with the elevated activin levels in INH(-/-)-LH-CTP mice, supports the conclusion that activin inhibits adrenal tumor growth by inducing x-zone regression.  相似文献   
997.
998.
TiO2 hollow nanowires (HNWs) and nanoparticles (NPs) constitute promising architectures for QDs sensitized photoanodes for H2 generation. We sensitize these structures with CdS/CdSe quantum dots by two different methods (chemical bath deposition, CBD and succesive ionic layer adsorption and reaction, SILAR) and evaluate the performance of these photoelectrodes. Remarkable photocurrents of 4 mA·cm and 8 mA·cm?2 and hydrogen generation rates of 40 ml·cm?2·day?1 and 80 ml·cm?2·day?1 have been obtained in a three electrode configuration with sacrificial hole scavengers (Na2S and Na2SO3), for HNWs and NPs respectively, which is confirmed through gas analysis. More importantly, autonomous generation of H2 (20 ml·cm?2·day?1 corresponding to 2 mA·cm?2 photocurrent) is obtained in a two electrode configuration at short circuit under 100 mW·cm?2 illumination, clearly showing that these photoanodes can produce hydrogen without the assistance of any external bias. To the best of the authors' knowledge, this is the highest unbiased solar H2 generation rate reported for these of QDs based heterostructures. Impedance spectroscopy measurements show similar electron density of trap states below the TiO2 conduction band while the recombination resistance was higher for HNWs, consistently with the much lower surface area compared to NPs. However, the conductivity of both structures is similar, in spite of the one dimensional character of HNWs, which leaves some room for improvement of these nanowired structures. The effect of the QDs deposition method is also evaluated. Both structures show remarkable stability without any appreciable photocurrent loss after 0.5 hour of operation. The findings of this study constitute a relevant step towards the feasibility of hydrogen generation with wide bandgap semiconductors/quantum dots based heterostructures.  相似文献   
999.
Specialization and concomitant trade‐offs are assumed to underlie the non‐neutral coexistence of lineages. Trade‐offs across heterogeneous environments can promote diversity by preventing competitive exclusion. However, the importance of trade‐offs in maintaining diversity in natural microbial assemblages is unclear, as trade‐offs are frequently not detected in artificial evolution experiments. Stressful conditions associated with patches of heavy‐metal enriched serpentine soils provide excellent opportunities for examining how heterogeneity may foster genetic diversity. Using a spatially replicated design, we demonstrate that rhizobium bacteria symbiotic with legumes inhabiting contrasting serpentine and nonserpentine soils exhibit a trade‐off between a genotype's nickel tolerance and its ability to replicate rapidly. Furthermore, we detected adaptive divergence in rhizobial assemblages across soil type heterogeneity at multiple sites, suggesting that this trade‐off may promote the coexistence of phenotypically distinct bacterial lineages. Trade‐offs and adaptive divergence may be important factors maintaining the tremendous diversity within natural assemblages of bacteria.  相似文献   
1000.
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin‐responsive [auxin (AUX)/indole‐3‐acetic acid (IAA)] proteins and the ubiquitin protein ligase SCFTIR to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin‐related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two‐hybrid and in vitro pull‐down results revealed an association between OsCYP2 and the co‐chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1‐naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号