首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6056篇
  免费   585篇
  国内免费   3篇
  6644篇
  2024年   8篇
  2023年   44篇
  2022年   118篇
  2021年   205篇
  2020年   114篇
  2019年   125篇
  2018年   165篇
  2017年   118篇
  2016年   212篇
  2015年   393篇
  2014年   407篇
  2013年   477篇
  2012年   619篇
  2011年   549篇
  2010年   314篇
  2009年   276篇
  2008年   404篇
  2007年   377篇
  2006年   354篇
  2005年   293篇
  2004年   271篇
  2003年   231篇
  2002年   186篇
  2001年   40篇
  2000年   20篇
  1999年   25篇
  1998年   53篇
  1997年   30篇
  1996年   20篇
  1995年   17篇
  1994年   21篇
  1993年   14篇
  1992年   18篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   10篇
  1981年   8篇
  1980年   10篇
  1979年   5篇
  1976年   4篇
  1973年   5篇
  1972年   2篇
  1971年   3篇
排序方式: 共有6644条查询结果,搜索用时 15 毫秒
191.
192.
The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low‐conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources.  相似文献   
193.
In mice, avirulent strains (e.g. types II and III) of the protozoan parasite Toxoplasma gondii are restricted by the immunity‐related GTPase (IRG) resistance system. Loading of IRG proteins onto the parasitophorous vacuolar membrane (PVM) is required for vacuolar rupture resulting in parasite clearance. In virulent strain (e.g. type I) infections, polymorphic effector proteins ROP5 and ROP18 cooperate to phosphorylate and thereby inactivate mouse IRG proteins to preserve PVM integrity. In this study, we confirmed the dense granule protein GRA7 as an additional component of the ROP5/ROP18 kinase complex and identified GRA7 association with the PVM by direct binding to ROP5. The absence of GRA7 results in reduced phosphorylation of Irga6 correlated with increased vacuolar IRG protein amounts and attenuated virulence. Earlier work identified additional IRG proteins as targets of T. gondii ROP18 kinase. We show that the only specific target of ROP18 among IRG proteins is in fact Irga6. Similarly, we demonstrate that GRA7 is strictly an Irga6‐specific virulence effector. This identifies T. gondii GRA7 as a regulator for ROP18‐specific inactivation of Irga6. The structural diversity of the IRG proteins implies that certain family members constitute additional specific targets for other yet unknown T. gondii virulence effectors.  相似文献   
194.
195.
Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer’s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies.  相似文献   
196.
197.
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S‐adenosylmethionine, which, after transferring its methyl group, is converted to S‐adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.  相似文献   
198.
Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes. Applying this strategy to inhibit Ras stepwise in synchronous cell populations revealed that Ras signaling was required well into G1 for Cyclin D induction, pocket protein phosphorylation and S-phase entry, irrespective of whether cells emerged from quiescence or G2/M. Unexpectedly, Erk, and not PI3K/Akt or Ral was activated by Ras at mid-G1, albeit PI3K/Akt signalling was a necessary companion of Ras/Erk for sustaining cyclin-D levels and G1/S transition. Our findings chart mitogenic signaling by endogenous Ras during G1 and identify limited effector engagement restricted to Raf/MEK/Erk as a cogent distinction from oncogenic Ras signalling.  相似文献   
199.
Repeat marine heat wave‐induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral‐associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad‐scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2‐sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host‐specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching‐resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome‐environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles.  相似文献   
200.
Harvesting can have profound impacts on the ecology and evolution of marine populations. However, little is known about the strength and direction of fisheries‐induced selection acting on multiple traits in the wild. Here, we used acoustic telemetry to directly monitor individual behavior and fate in an intensively harvested species, the European lobster (Homarus gammarus, n = 100), in southern Norway. Overall, 24% of the tracked lobsters survived the two‐month harvest season within the study area. Our results indicated that local survival was not random with respect to phenotype. We found no clear support for fisheries‐induced selection acting directly on body size. However, lobsters with large crusher claws relative to their body size, typical of socially dominant individuals, appeared at higher risk of being captured in the conventional trap fishery. We also detected a fine‐scale spatial gradient in survival. After accounting for this gradient, individuals displaying larger home ranges were more likely to survive the harvest season. Finally, we found significant repeatabilities for lobster behavior on a monthly timescale, indicating that individual behavioral attributes tended to persist and may reflect personality. Our study therefore provides empirical support for the need to consider an evolutionary enlightened approach to fisheries management that considers the influence of harvest on multiple traits of target species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号