首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7666篇
  免费   736篇
  国内免费   4篇
  8406篇
  2024年   10篇
  2023年   50篇
  2022年   132篇
  2021年   247篇
  2020年   134篇
  2019年   165篇
  2018年   210篇
  2017年   152篇
  2016年   260篇
  2015年   484篇
  2014年   494篇
  2013年   579篇
  2012年   768篇
  2011年   668篇
  2010年   394篇
  2009年   349篇
  2008年   498篇
  2007年   451篇
  2006年   444篇
  2005年   363篇
  2004年   353篇
  2003年   292篇
  2002年   251篇
  2001年   55篇
  2000年   36篇
  1999年   43篇
  1998年   71篇
  1997年   48篇
  1996年   28篇
  1995年   25篇
  1994年   32篇
  1993年   27篇
  1992年   28篇
  1991年   22篇
  1990年   15篇
  1989年   12篇
  1988年   15篇
  1987年   11篇
  1986年   19篇
  1985年   17篇
  1984年   14篇
  1983年   9篇
  1982年   17篇
  1981年   13篇
  1980年   16篇
  1979年   16篇
  1976年   8篇
  1974年   7篇
  1973年   7篇
  1972年   7篇
排序方式: 共有8406条查询结果,搜索用时 9 毫秒
61.
Motivated by experiments connecting linker histone (LH) deficiency to lymphoma progression and retinal disorders, we study by mesoscale chromatin modeling how LH density (ρ) induces gradual, as well sudden, changes in chromatin architecture and how the process depends on DNA linker length, LH binding dynamics and binding mode, salt concentration, tail modifications, and combinations of ρ and linker DNA length. We show that ρ tightly regulates the overall shape and compaction of the fiber, triggering a transition from an irregular disordered state to a compact and ordered structure. Such a structural transition, resembling B to A compartment transition connected with lymphoma of B cells, appears to occur around ρ = 0.5. The associated mechanism is DNA stem formation by LH binding, which is optimal when the lengths of the DNA linker and LH C-terminal domain are similar. Chromatin internal and external parameters are key regulators, promoting or impeding the transition. The LH density thus emerges as a critical tunable variable in controlling cellular functions through structural transitions of the genome.  相似文献   
62.
Patients with hormone receptor(HR)-positive tumors breast cancer usually experience a relatively low pathological complete response(p CR) to neoadjuvant chemotherapy(NAC). Here, we derived a 10-micro RNA risk score(10-mi RNA RS)-based model with better performance in the prediction of p CR and validated its relation with the disease-free survival(DFS) in 755 HRpositive breast cancer patients(273, 265, and 217 in the training, internal, and external validation sets, respectively). This model,pres...  相似文献   
63.
The mechanisms that control differentiation of stem cells to specialised cell types probably include factors intrinsic to stem cells as well as extrinsic factors produced by the microenvironment of the stem cell niche. The Drosophila male germline is renewed from a population of stem cells located in the apical tip of the adult testis. The morphological relationship between germline stem cells and their surrounding somatic cells is well understood but the factors that regulate stem cell proliferation and differentiation are still being uncovered. This study examined the effect of stimulating Dpp signalling directly in male germ cells. Ectopic Dpp or Activin signalling resulted in overproliferation of both stem cell-like and spermatogonial-like cells in the apical region of the testis. A third cell population that expressed stem cell markers was seen to proliferate in the distal testis when Dpp signalling was either stimulated or repressed in germline stem cells.  相似文献   
64.
Plant–soil interactions directly affect plant success in terms of establishment, survival, growth and reproduction. Negative plant–soil feedback on such traits may therefore reduce the density and abundance of plants of a given species at a given site. Furthermore, if conspecific feedback varies among population sites, it could help explain geographic variation in plant population size. We tested for among-site variation in conspecific plant–soil feedback in a greenhouse experiment using seeds and soils from 8 natural populations of Lobelia siphilitica hosting 30–330 plants. The first cohort of seeds was grown on soil collected from each native site, while the second cohort was grown on the soil conditioned by the first. Our goal was to distinguish site-specific effects mediated by biotic and/or abiotic soil properties from those inherent in seed sources. Cohort 1 plants grown from seeds produced in small populations performed better in terms of germination, growth, and survival compared to plants produced in large populations. Plant performance decreased substantially between cohorts, indicating strong negative feedback. Most importantly, the strength of negative feedback scaled linearly (i.e., was less negative) with increasing size of the native plant population, particularly for germination and survival, and was better explained by soil- rather than seed-source effects. Even with a small number of sites, our results suggest that the potential for negative plant–soil feedback varies among populations of L. siphilitica, and that small populations were more susceptible to negative feedback. Conspecific plant–soil feedback may contribute to plant population size variation within a species’ native range.  相似文献   
65.
Abstract Two strains of Staphylococcus epidermidis isolated from patients with toxic shock symptoms have been reported to carry genes related to S. aureus enterotoxins B and C by dot-blot hybridisation, although the corresponding superantigenic toxins were not detected immunologically. We here show that these strains produce no superantigens capable of stimulating proliferation of human mononuclear leukocytes or rabbit splenocytes, and that no DNA homologous to the seb or sec genes can be detected by PCR. However, stimulation of human monocytes by whole killed bacteria induced dose-dependent production of the cytokines TNFα, IL-1 β and IL-6, which may be responsible for the clinical symptoms in these patients.  相似文献   
66.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   
67.
In regulated rivers, fluctuating water depths associated with pulsed discharges may strand small fish in side channels and pools. Quantitative assessments of stranded fish are difficult in field studies (e.g., due to unknown effects of avian and terrestrial vertebrate predators). To assess such lateral displacement and stranding on juvenile stream fishes, we designed, constructed, and tested (with three species) a 2 × 1-m, lateral-displacement flume. The flume featured a main channel that never drained and a raised, wide “floodplain” channel that alternately flooded, with a simulated pulse, and became dewatered. The floodplain contained four pools, with different shapes and draining capacities, in which fish could become stranded as the water level subsided. Fish-stranding rates (8%) in this relatively compact laboratory flume, after exposure to simulated pulsed stream flows, were comparable to those observed in past investigations using larger, artificial streams.  相似文献   
68.
Focal adhesion kinase (FAK) is a protein tyrosine kinase enriched in focal adhesions, which plays a critical role in integrin-dependent cell motility and survival. The crucial step in its activation is autophosphorylation on Tyr-397, which promotes the recruitment of several enzymes including Src family kinases and the activation of multiple signaling pathways. We found in a yeast two-hybrid screen that the N-terminal domain of FAK interacted with protein inhibitor of activated STAT1 (PIAS1). This interaction was confirmed and shown to be direct using in vitro assays. PIAS1 was co-immunoprecipitated with FAK from transfected cells and brain extracts. PIAS1 has recently been recognized as a small ubiquitin-like modifier (SUMO) ligase. In the presence of PIAS1 and SUMO-1, FAK was sumoylated in intact cells, whereas PYK2, a closely related enzyme, was not. Sumoylation occurred on Lys-152, a residue conserved in FAK during evolution. Sumoylated FAK, like PIAS1, was recovered predominantly from the nuclear fraction. Sumoylation did not require the catalytic activity or autophosphorylation of FAK. In contrast, sumoylation increased dramatically the ability of FAK to autophosphorylate in intact cells and in immune precipitate kinase assays. Endogenous FAK was sumoylated in the presence of PIAS1 and SUMO-1 independently of cell adhesion, and autophosphorylation of sumoylated FAK was persistently increased in suspended cells. These observations show that sumoylation controls the activity of a protein kinase and suggest that FAK may play a novel role in signaling between the plasma membrane and the nucleus.  相似文献   
69.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.  相似文献   
70.
Immune suppression remains a consistent obstacle to successful anti-tumor immune responses. As tumors develop, they create a microenvironment that not only supports tumor growth and metastasis but also reduces potential adaptive immunity to tumor antigens. Among the many components of this tumor microenvironment is a population of dendritic cells which exert profound immune suppressive effects on T cells. In this review, we discuss our recent findings related to these tumor-associated dendritic cells and how targeting them may serve to generate more durable anti-tumor immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号