首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6070篇
  免费   597篇
  国内免费   6篇
  6673篇
  2024年   9篇
  2023年   44篇
  2022年   117篇
  2021年   205篇
  2020年   115篇
  2019年   125篇
  2018年   163篇
  2017年   119篇
  2016年   214篇
  2015年   393篇
  2014年   412篇
  2013年   477篇
  2012年   621篇
  2011年   548篇
  2010年   314篇
  2009年   275篇
  2008年   400篇
  2007年   377篇
  2006年   355篇
  2005年   298篇
  2004年   271篇
  2003年   236篇
  2002年   186篇
  2001年   42篇
  2000年   24篇
  1999年   27篇
  1998年   54篇
  1997年   30篇
  1996年   21篇
  1995年   18篇
  1994年   22篇
  1993年   16篇
  1992年   19篇
  1991年   13篇
  1990年   11篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   10篇
  1983年   4篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1976年   4篇
  1973年   3篇
  1971年   2篇
  1938年   4篇
排序方式: 共有6673条查询结果,搜索用时 15 毫秒
11.

Objectives

The primary objective was to examine trends in new HIV diagnoses in a UK area of high HIV prevalence between 2000 and 2012 with respect to site of diagnosis and stage of HIV infection.

Design

Single-centre observational cohort study.

Setting

An outpatient HIV department in a secondary care UK hospital.

Participants

1359 HIV-infected adults.

Main Outcome Measures

Demographic information (age, gender, ethnicity, and sexual orientation), site of initial HIV diagnosis (Routine settings such as HIV/GUM clinics versus Non-Routine settings such as primary care and community venues), stage of HIV infection, CD4 count and seroconversion symptoms were collated for each participant.

Results

There was a significant increase in the proportion of new HIV diagnoses made in Non-Routine settings (from 27.0% in 2000 to 58.8% in 2012; p<0.001). Overall there was a decrease in the rate of late diagnosis from 50.7% to 32.9% (p=0.001). Diagnosis of recent infection increased from 23.0% to 47.1% (p=0.001). Of those with recent infection, significantly more patients were likely to report symptoms consistent with a seroconversion illness over the 13 years (17.6% to 65.0%; p<0.001).

Conclusions

This is the first study, we believe, to demonstrate significant improvements in HIV diagnosis and a shift in diagnosis of HIV from HIV/GUM settings to primary practice and community settings due to multiple initiatives.  相似文献   
12.
Cognato, A. I., Hulcr, J., Dole, S. A. & Jordal, B. H. (2010). Phylogeny of haplo‐diploid, fungus‐growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. —Zoologica Scripta, 40, 174–186. The ambrosia beetle tribe Xyleborini currently contains 30 genera and approximately 1200 species which are distributed throughout worldwide forests with most diversity located in the tropics. They also represent the most invasive scolytines in North America. Despite economic concerns and biological curiosity with this group, a comprehensive understanding of generic boundaries and the evolutionary relationship among species is lacking. In this study, we include 155 xyleborine species representing 23 genera in parsimony and Bayesian analyses using 3925 nucleotides from mitochondrial (COI) and nuclear genomes (28S, ArgK, CAD, EF‐1α) and 39 morphological characters. The phylogenies resulting from the parsimony analyses, which treated gap positions either as missing or fifth character states, and the Bayesian analysis were generally similar. Clades with high support or posterior probabilities were found in all trees, while those with low support were not recovered by all analyses. Fourteen of the 23 genera were monophyletic although not all relationships among the genera were resolved. We show monophyly of several species groups associated with particular morphological and biological characters and suggest recognition of these groups as genera. Most interesting was the monophyly of South and Central American species representing several genera. This finding suggests recent and fast radiation of xyleborines in the New World accompanied by morphological and biological diversification.  相似文献   
13.
We use an outbred laboratory mouse strain (ICR/CD‐1, Charles River Laboratories, Inc.) to model a type of preprimate locomotion associated with rudimentary pedal grasping. Ten male mice were assigned to either control or climbing groups (n = 5 per group). Climbing mice lived within a specialized terrarium that included ~7.5 m of thin branches (5 and 10 cm long) with a thickness of 3.3mm, arranged in a reticulated canopy. Food, water, and a nest site were placed among the branches. To discourage mice from palmigrade or digitigrade locomotion, the floor of the terrarium was flooded with a few centimeters of water. Climbing mice were placed in this setting upon weaning and reared for 3 months until they were mature in size. Litter, and age‐matched controls were also maintained for comparison with climbers. Climbing mice quickly acclimated to the requirements of the fine‐branch model using the foot and tail for grasping and balance. At maturity, climbing and control mice exhibited minor, but significant, morphological plasticity. For climbers, this includes a greater angle of the femoral neck, larger patellar groove index, relatively shorter talar neck length, and more circular talar head aspect ratio (P < 0.10). Climbers also exhibit increased curvature of the distal third metacarpal, decreased talar head angle, and relatively longer caudal vertebrae transverse processes (P < 0.05). These results in a small‐bodied eutherian mammal suggest that facultative hallucial opposability and coordinated tail use enable a kind of grasping active arboreal quadrupedality relevant to the latest stages of pre‐euarchontan evolution. In light of these data, we hypothesize that a unique advantage of mouse‐sized mammals is that they exhibit a highly flexible body plan allowing them to engage in a diverse array of anatomical positions without requiring specific limb morphologies. J. Morphol.,2011. © 2010 Wiley‐Liss, Inc.  相似文献   
14.
Activin, a member of the transforming growth factor superfamily, is upregulated in a number of inflammatory episodes such as septicemia and rheumatoid arthritis. In the CNS, activin has been predominantly assessed in terms of a neuroprotective role. In this report we characterized the activin response in the CNS in a rabbit model of meningitis. In normal animals, cerebrospinal fluid (CSF) activin levels were higher than those in serum, indicating an intracranial secretion of this cytokine. Following intracisternal inoculation with Streptococcus pneumoniae, activin in CSF was unchanged for the first 12 h and then rose progressively; levels were increased approximately 15-fold within 24 h. Activin levels were correlated positively with CSF protein content and with the number of apoptotic neurons in the dentate gyrus. No apparent correlation was observed between CSF activin concentrations and bacterial titer, lactate concentrations or leukocyte density. Using immunohistochemistry, activin staining was localized to epithelial cells of the choroid plexus, cortical neurons and the CA3 region of the hippocampus, with similar staining intensities in both normal and meningitic brains. However, in meningitic brains there was also strong staining in activated microglia and infiltrating macrophages. Taken together, these results demonstrate that activin forms part of the CNS response to immune challenge and may be an important mediator to modulate inflammatory processes in the brain.  相似文献   
15.
Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large‐scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co‐evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.  相似文献   
16.
The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.  相似文献   
17.
18.
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

  相似文献   

19.

Background

Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts.

Methodology/Principal Findings

DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity.

Conclusions/Significance

Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups.  相似文献   
20.
Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the ‘off-target’ effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of molecules used in immunotherapy of allergic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号