首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   64篇
  770篇
  2023年   2篇
  2022年   10篇
  2021年   21篇
  2020年   5篇
  2019年   7篇
  2018年   19篇
  2017年   7篇
  2016年   17篇
  2015年   28篇
  2014年   33篇
  2013年   48篇
  2012年   82篇
  2011年   51篇
  2010年   44篇
  2009年   41篇
  2008年   51篇
  2007年   42篇
  2006年   32篇
  2005年   43篇
  2004年   40篇
  2003年   53篇
  2002年   50篇
  2001年   5篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有770条查询结果,搜索用时 15 毫秒
91.
ABSTRACT: BACKGROUND: Bathycoccus prasinos is an extremely small cosmopolitan marine green alga whose cells are covered with intricate spider's web patterned scales that develop within the Golgi cisternae before their transport to the cell surface. The objective of this work is to sequence and analyze its genome, and to present a comparative analysis with other known genomes of the green lineage. RESULTS: Its small genome of 15Mb consists of 19 chromosomes and lacks transposons. Although 70% of all B. prasinos genes share similarities with other Viridiplantae genes, up to 428 genes were probably acquired by horizontal gene transfer, mainly from other eukaryotes. Two chromosomes, one big and one small, are atypical, an unusual synapomorphic feature within the Mamiellales. Genes on these atypical outlier chromosomes show lower GC content and a significant fraction of putative horizontal gene transfer genes. Whereas the small outlier chromosome lacks colinearity with other Mamiellales and contains many unknown genes without homologs in other species, the big outlier shows a higher intron content, increased expression levels and a unique clustering pattern of housekeeping functionalities. Four gene families are highly expanded in B. prasinos, including sialyltransferases, sialidases, ankyrin repeats and zinc ion-binding genes, and we hypothesize that these genes are associated with the process of scale biogenesis. CONCLUSION: The minimal genomes of the Mamiellophyceae provide a baseline for evolutionary and functional analyses of metabolic processes in green plants.  相似文献   
92.
93.
Flagellated heterotrophic microeukaryotes have key roles for the functioning of marine ecosystems as they channel large amounts of organic carbon to the upper trophic levels and control the population sizes of bacteria and archaea. Still, we know very little on the diversity patterns of most groups constituting this evolutionary heterogeneous assemblage. Here, we investigate 11 groups of uncultured flagellates known as MArine STramenopiles (MASTs). MASTs are ecologically very important and branch at the base of stramenopiles. We explored the diversity patterns of MASTs using pyrosequencing (18S rDNA) in coastal European waters. We found that MAST groups range from highly to lowly diversified. Pyrosequencing (hereafter ‘454'') allowed us to approach to the limits of taxonomic diversity for all MAST groups, which varied in one order of magnitude (tens to hundreds) in terms of operational taxonomic units (98% similarity). We did not evidence large differences in activity, as indicated by ratios of DNA:RNA-reads. Most groups were strictly planktonic, although we found some groups that were active in sediments and even in anoxic waters. The proportion of reads per size fraction indicated that most groups were composed of very small cells (∼2–5 μm). In addition, phylogenetically different assemblages appeared to be present in different size fractions, depths and geographic zones. Thus, MAST diversity seems to be highly partitioned in spatial scales. Altogether, our results shed light on these ecologically very important but poorly known groups of uncultured marine flagellates.  相似文献   
94.
95.
In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV) infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG) expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH)3-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines.  相似文献   
96.
Invariant NKT cells (iNKT cells) have been reported to play a role not only in innate immunity but also to regulate several models of autoimmunity. Furthermore, iNKT cells are necessary for the generation of the prototypic eye-related immune regulatory phenomenon, anterior chamber associated immune deviation (ACAID). In this study, we explore the role of iNKT cells in regulation of autoimmunity to retina, using a model of experimental autoimmune uveitis (EAU) in mice immunized with a uveitogenic regimen of the retinal Ag, interphotoreceptor retinoid-binding protein. Natural strain-specific variation in iNKT number or induced genetic deficiencies in iNKT did not alter baseline susceptibility to EAU. However, iNKT function seemed to correlate with susceptibility and its pharmacological enhancement in vivo by treatment with iNKT TCR ligands at the time of uveitogenic immunization reproducibly ameliorated disease scores. Use of different iNKT TCR ligands revealed dependence on the elicited cytokine profile. Surprisingly, superior protection against EAU was achieved with alpha-C-GalCer, which induces a strong IFN-gamma but only a weak IL-4 production by iNKT cells, in contrast to the ligands alpha-GalCer (both IFN-gamma and IL-4) and OCH (primarily IL-4). The protective effect of alpha-C-GalCer was associated with a reduction of adaptive Ag-specific IFN-gamma and IL-17 production and was negated by systemic neutralization of IFN-gamma. These data suggest that pharmacological activation of iNKT cells protects from EAU at least in part by a mechanism involving innate production of IFN-gamma and a consequent dampening of the Th1 as well as the Th17 effector responses.  相似文献   
97.
98.
Human immunodeficiency virus type 1 (HIV-1) infection encounters an early block in the cells of New World monkeys because the CD4 receptor does not efficiently support HIV-1 entry. We adapted HIV-1(NL4-3) and HIV-1(KB9), two HIV-1 variants with different envelope glycoproteins, to replicate efficiently in cells expressing the CD4 and CXCR4 proteins of the common marmoset, a New World monkey. The HIV-1(NL4-3) adaptation involves three gp120 changes that result in a specific increase in affinity for the marmoset CD4 glycoprotein. The already high affinity of the HIV-1(KB9) envelope glycoproteins for marmoset CD4 did not significantly change as a result of the adaptation. Instead, changes in the gp120 variable loops and gp41 ectodomain resulted in improved replication in cells expressing the marmoset receptors. HIV-1(KB9) became relatively sensitive to neutralization by soluble CD4 and antibodies as a result of the adaptation. These results demonstrate the distinct mechanistic pathways by which the HIV-1 envelope glycoproteins can adapt to less-than-optimal CD4 molecules and provide HIV-1 variants that can overcome some of the early blocks in New World monkey cells.  相似文献   
99.
100.
Nucleotide oligomerisation domain 2 (NOD2) is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs) in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号