全文获取类型
收费全文 | 6609篇 |
免费 | 607篇 |
国内免费 | 1篇 |
专业分类
7217篇 |
出版年
2023年 | 23篇 |
2022年 | 61篇 |
2021年 | 130篇 |
2020年 | 70篇 |
2019年 | 98篇 |
2018年 | 94篇 |
2017年 | 97篇 |
2016年 | 172篇 |
2015年 | 302篇 |
2014年 | 322篇 |
2013年 | 413篇 |
2012年 | 511篇 |
2011年 | 497篇 |
2010年 | 357篇 |
2009年 | 243篇 |
2008年 | 424篇 |
2007年 | 372篇 |
2006年 | 351篇 |
2005年 | 350篇 |
2004年 | 355篇 |
2003年 | 333篇 |
2002年 | 260篇 |
2001年 | 101篇 |
2000年 | 96篇 |
1999年 | 86篇 |
1998年 | 71篇 |
1997年 | 55篇 |
1996年 | 61篇 |
1995年 | 52篇 |
1994年 | 43篇 |
1993年 | 43篇 |
1992年 | 51篇 |
1991年 | 37篇 |
1990年 | 35篇 |
1989年 | 42篇 |
1988年 | 24篇 |
1987年 | 30篇 |
1986年 | 33篇 |
1985年 | 30篇 |
1984年 | 40篇 |
1983年 | 27篇 |
1982年 | 32篇 |
1981年 | 21篇 |
1979年 | 28篇 |
1978年 | 28篇 |
1977年 | 24篇 |
1976年 | 23篇 |
1975年 | 25篇 |
1973年 | 29篇 |
1972年 | 29篇 |
排序方式: 共有7217条查询结果,搜索用时 15 毫秒
71.
Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis 总被引:2,自引:0,他引:2
We present redirection of electron flow to more efficient proton pumping branches within respiratory chains as a generally applicable metabolic engineering strategy, which tailors microbial metabolism to the specific requirements of high cell density processes by improving product and biomass yields. For the example of riboflavin production by Bacillus subtilis, we reduced the rate of maintenance metabolism by about 40% in a cytochrome bd oxidase knockout mutant. Since the putative Yth and the caa(3) oxidases were of minor importance, the most likely explanation for this improvement is translocation of two protons per transported electron via the remaining cytochrome aa(3) oxidase, instead of only one proton via the bd oxidase. The reduction of maintenance metabolism, in turn, significantly improved the yield of recombinant riboflavin and B. subtilis biomass in fed-batch cultures. 相似文献
72.
73.
The NHERF1 PDZ2 domain regulates PKA-RhoA-p38-mediated NHE1 activation and invasion in breast tumor cells 总被引:1,自引:0,他引:1 下载免费PDF全文
Cardone RA Bellizzi A Busco G Weinman EJ Dell'Aquila ME Casavola V Azzariti A Mangia A Paradiso A Reshkin SJ 《Molecular biology of the cell》2007,18(5):1768-1780
Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling. 相似文献
74.
Schlenzig D Rönicke R Cynis H Ludwig HH Scheel E Reymann K Saido T Hause G Schilling S Demuth HU 《Journal of neurochemistry》2012,121(5):774-784
Pyroglutamate (pGlu)-modified amyloid peptides have been identified in sporadic and familial forms of Alzheimer's disease (AD) and the inherited disorders familial British and Danish Dementia (FBD and FDD). In this study, we characterized the aggregation of amyloid-β protein Aβ37, Aβ38, Aβ40, Aβ42 and ADan species in vitro, which were modified by N-terminal pGlu (pGlu-Aβ3-x, pGlu-ADan) or possess the intact N-terminus (Aβ1-x, ADan). The pGlu-modification confers rapid formation of oligomers and short fibrillar aggregates. In accordance with these observations, the pGlu-modified Aβ38, Αβ40 and Αβ42 species inhibit hippocampal long term potentiation of synaptic response, but pGlu-Aβ3-42 showing the highest effect. Among the unmodified Aβ peptides, only Aβ1-42 exhibites such propensity, which was similar to pGlu-Aβ3-38 and pGlu-Aβ3-40. Likewise, the amyloidogenic peptide pGlu-ADan impaired synaptic potentiation more pronounced than N-terminal unmodified ADan. The results were validated using conditioned media from cultivated HEK293 cells, which express APP variants favoring the formation of Aβ1-x, Aβ3-x or N-truncated pGlu-Aβ3-x species. Hence, we show that the ability of different amyloid peptides to impair synaptic function apparently correlates to their potential to form oligomers as a common mechanism. The pGlu-modification is apparently mediating a higher surface hydrophobicity, as shown by 1-anilinonaphtalene-8-sulfonate fluorescence, which enforces potential to interfere with neuronal physiology. 相似文献
75.
76.
Mate Familiarity Affects Pairing Behaviour in a Long‐Term Monogamous Lizard: Evidence from Detailed Bio‐Logging and a 31‐Year Field Study 下载免费PDF全文
Stephan T. Leu Dale Burzacott Martin J. Whiting C. Michael Bull 《Ethology : formerly Zeitschrift fur Tierpsychologie》2015,121(8):760-768
Long‐term monogamy is most prevalent in birds but is also found in lizards. We combined a 31‐year field study of the long‐lived, monogamous Australian sleepy lizard, Tiliqua rugosa, with continuous behavioural observations through GPS data logging, in 1 yr, to investigate the duration of pair bonds, rates of partner change and whether either the reproductive performance hypothesis or the mate familiarity hypothesis could explain this remarkable long‐term monogamy. The reproductive performance hypothesis predicts higher reproductive success in more experienced parents, whereas the mate familiarity hypothesis suggests that effects of partner familiarity select for partner retention and long‐term monogamy. Rates of partner change were below 34% over a 5‐yr period and most sleepy lizards formed long‐term pair bonds: 31 partnerships lasted for more than 15 yr, 110 for more than 10 yr, and the recorded maximum was 27 yr (ongoing). In the year when we conducted detailed observations, familiar pairs mated significantly earlier than unfamiliar pairs. Previous pairing experience (total number of years paired with previous partners) had no significant effect. Early mating often equates to higher reproductive success, and we infer that is the case in sleepy lizards. Early mating of familiar pairs was not due to better body condition. We propose two suggestions about the proximate mechanisms that may allow familiar pair partners to mate earlier than unfamiliar partners. First, they may have improved coordination of their reproductive sexual cycles to reach receptivity earlier and thereby maximise fertilisation success. Second, they may forage more efficiently, benefiting from effective information transfer and/or cooperative predator detection. Those ideas need empirical testing in the future. Regardless of the mechanism, our observations of sleepy lizard pairing behaviour support the mate familiarity hypothesis, but not the reproductive performance hypothesis, as an explanation for its long‐term monogamous mating system. 相似文献
77.
Nuria Albet-Torres Marieke J. Bloemink Tom Barman Robin Candau Kerstin Fr?lander Michael A. Geeves Kerstin Golker Christian Herrmann Corinne Lionne Claudia Piperio Stephan Schmitz Claudia Veigel Alf M?nsson 《The Journal of biological chemistry》2009,284(34):22926-22937
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (1–3). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (4–6). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k′5, k′6, or k′2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K′1 and k′2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2 − k5 and k′2 − k′5, or leftward transitions, k−2 − k−5 and k′−2 − k′−5) and equilibrium constants by uppercase letters (K1, K′1, KT, K3, K′3, K6, k′6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/k−i.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 10–13). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (19–22) and a reduced curvature of the force-velocity relationship (19–22). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (20–22) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 7–9), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity. 相似文献
78.
We report the chemically determined sequence of most of the polypeptide chain of the coat protein of tomato bushy stunt virus. Peptide locations have been determined by comparison with the high-resolution electron density map from X-ray crystallographic analysis as well as by conventional chemical overlaps. Three small gaps remain in the 387-residue sequence. Positively charged side-chains are concentrated in the N-terminal part of the polypeptide (the R domain) as well as on inward-facing surfaces of the S domain. There is homology of S-domain sequences with structurally corresponding residues in southern bean mosaic virus. 相似文献
79.
Karl T Chwalisz WT Wedekind D Hedrich HJ Hoffmann T Jacobs R Pabst R von Hörsten S 《Regulatory peptides》2003,115(2):81-90
Dipeptidyl-peptidase IV (DPPIV) is involved in endocrine and immune functions via cleavage of regulatory peptides with a N-terminal proline or alanine such as incretins, neuropeptide Y, or several chemokines. So far no systematic investigations on the localization and transmission of the Dpp4 gene or the natural variations of DPPIV-like enzymatic function in different rat strains have been conducted. Here we mapped the Dpp4 gene to rat chromosome 3 and describe a semi-dominant mode of inheritance for Dpp4 in a mutant F344/DuCrj(DPPIV-) rat substrain lacking endogenous DPPIV-like activity. This mutant F344/DuCrj(DPPIV-) rat substrain constantly exhibits a nearly complete lack of DPPIV-like enzymatic activity, while segregation of DPPIV-like enzymatic activity was observed in another DPPIV-negative F344/Crl(Ger/DPPIV-) rat substrain. Screening of 12 different inbred laboratory rat strains revealed dramatic differences in DPPIV-like activity ranging from 11 mU/microl (LEW/Ztm rats) to 40 mU/microl (BN/Ztm and DA/Ztm rats). A lack of DPPIV-like activity in F344 rats was associated with an improved glucose tolerance and blunted natural killer cell function, which indicates the pleiotropic functional role of DPPIV in vivo. Overall, the variations in DPPIV-like enzymatic activity probably represent important confounding factors in studies using rat models for research on regulatory peptides. 相似文献
80.
Aletaha D Nell VP Stamm T Uffmann M Pflugbeil S Machold K Smolen JS 《Arthritis research & therapy》2005,7(4):R796-R806