首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5301篇
  免费   432篇
  国内免费   1篇
  2023年   19篇
  2022年   45篇
  2021年   111篇
  2020年   65篇
  2019年   85篇
  2018年   81篇
  2017年   81篇
  2016年   145篇
  2015年   270篇
  2014年   280篇
  2013年   358篇
  2012年   462篇
  2011年   424篇
  2010年   301篇
  2009年   214篇
  2008年   366篇
  2007年   328篇
  2006年   306篇
  2005年   290篇
  2004年   286篇
  2003年   271篇
  2002年   223篇
  2001年   59篇
  2000年   50篇
  1999年   46篇
  1998年   52篇
  1997年   45篇
  1996年   47篇
  1995年   35篇
  1994年   24篇
  1993年   31篇
  1992年   32篇
  1991年   21篇
  1990年   11篇
  1989年   14篇
  1987年   12篇
  1986年   10篇
  1985年   20篇
  1984年   18篇
  1983年   12篇
  1982年   13篇
  1981年   12篇
  1979年   9篇
  1978年   14篇
  1977年   11篇
  1973年   8篇
  1972年   9篇
  1971年   7篇
  1968年   7篇
  1880年   8篇
排序方式: 共有5734条查询结果,搜索用时 15 毫秒
991.
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.  相似文献   
992.
The poor inhibitory activity of circulating antithrombin (AT) is critical to the formation of blood clots at sites of vascular damage. AT becomes an efficient inhibitor of the coagulation proteases only after binding to a specific heparin pentasaccharide, which alters the conformation of the reactive center loop (RCL). The molecular basis of this activation event lies at the heart of the regulation of hemostasis and accounts for the anticoagulant properties of the low molecular weight heparins. Although several structures of AT have been solved, the conformation of the RCL in native AT remains unknown because of the obligate crystal contact between the RCL of native AT and its latent counterpart. Here we report the crystallographic structure of a variant of AT in its monomeric native state. The RCL shifted approximately 20 A, and a salt bridge was observed between the P1 residue (Arg-393) and Glu-237. This contact explains the effect of mutations at the P1 position on the affinity of AT for heparin and also the properties of AT-Truro (E237K). The relevance of the observed conformation was verified through mutagenesis studies and by solving structures of the same variant in different crystal forms. We conclude that the poor inhibitory activity of the circulating form of AT is partially conferred by intramolecular contacts that restrain the RCL, orient the P1 residue away from attacking proteases, and additionally block the exosite utilized in protease recognition.  相似文献   
993.
Human aminopeptidase N (APN) is used as a routine marker for myelomonocytic cells in hematopoietic malignant disorders. Its gene and surface expressions are increased in cases of malignant transformation, inflammation, or T cell activation, whereas normal B and resting T cells lack detectable APN protein expression. In this study we elucidated the intracellular distribution, expression pattern, and enzymatic activity of a naturally occurring mutation in the coding region of the APN gene. At physiological temperatures the mutant protein is enzymatically inactive, persists as a mannose-rich polypeptide in the endoplasmic reticulum, and is ultimately degraded by an endoplasmic reticulum-associated degradation pathway. It shows in part the distinct behavior of a temperature-sensitive mutant with a permissive temperature of 32 degrees C, leading to correct sorting of the Golgi compartment accompanied by the acquisition of proper glycosylation but without reaching the cell-surface membrane and without regaining its enzymatic activity. Because the patient bearing this mutation suffered from leukemia, possible links to the pathogenesis of leukemia are discussed.  相似文献   
994.
995.
996.
Collagen XVI is integrated tissue-dependently into distinct fibrillar aggregates, such as D-banded cartilage fibrils and fibrillin-1-containing microfibrils. In skin, the distribution of collagen XVI overlaps that of the collagen-binding integrins alpha1 beta1 and alpha2 beta1. Basal layer keratinocytes express integrin alpha2 beta1, whereas integrin alpha1 beta1 occurs in smooth muscle cells surrounding blood vessels, in hair follicles, and on adipocytes. Cells bearing the integrins alpha1 beta1 and alpha2 beta1 attach and spread on recombinant collagen XVI. Furthermore, collagen XVI induces the recruitment of these integrins into focal adhesion plaques, a principal step in integrin signaling. Of potential physiological relevance, these integrin-collagen XVI interactions may connect cells with specialized fibrils, thus contributing to the organization of fibrillar and cellular components within connective tissues. In cell-free binding assays, collagen XVI is more avidly bound by alpha1 beta1 integrin than by alpha2 beta1 integrin. Both integrins interact with collagen XVI via the A domain of their alpha subunits. A tryptic collagen XVI fragment comprising the collagenous domains 1-3 is recognized by alpha1 beta1 integrin. Electron microscopy of complexes of alpha1 beta1 integrin with this tryptic collagen XVI fragment or with full-length collagen XVI revealed a unique alpha1 beta1 integrin-binding site within collagen XVI located close to its C-terminal end.  相似文献   
997.
Addiction is a complex maladaptive behavior involving alterations in several neurotransmitter networks. In mammals, psychostimulants trigger elevated extracellular levels of dopamine, which can be modulated by central cholinergic transmission. Which elements of the cholinergic system might be targeted for drug addiction therapies remains unknown. The rewarding properties of drugs of abuse are central for the development of addictive behavior and are most commonly measured by means of the conditioned place preference (CPP) paradigm. We demonstrate here that adult zebrafish show robust CPP induced by the psychostimulant D-amphetamine. We further show that this behavior is dramatically reduced upon genetic impairment of acetylcholinesterase (AChE) function in ache/+ mutants, without involvement of concomitant defects in exploratory activity, learning, and visual performance. Our observations demonstrate that the cholinergic system modulates drug-induced reward in zebrafish, and identify genetically AChE as a promising target for systemic therapies against addiction to psychostimulants. More generally, they validate the zebrafish model to study the effect of developmental mutations on the molecular neurobiology of addiction in vertebrates.  相似文献   
998.
BACKGROUND: Sildenafil citrate (SIL) is contraindicated in patients with coronary heart disease who are treated with nitric oxide (NO) donators such as organic nitrates, as it potentiates NO-mediated vasodilation. The present study investigated whether SIL also affects the vasodilatory effects of nebivolol (NEB), a selective beta1-adrenoceptor blocker with an additional, endothelium-dependent NO-liberating property, in comparison to the combination SIL/glycerol trinitrate (GTN). METHODS AND RESULTS: Experiments were performed in isolated vessel rings of rat aorta (Wistar rats, 8-12 weeks), which had been pre-contracted with phenylephrine (10(-5) M). Isometric tension was measured by a force transducer, and cumulative concentration-response curves were obtained for each drug. The rank order of vasodilatory potency as measured by the concentration needed to achieve 50% relaxation (EC50) was GTN (0.08 microM) > SIL (1.25 microM) > or = NEB (3.5 microM). In the presence of both therapeutic (1 nM) and high (1 microM) concentrations of SIL, vasodilation of GTN was potentiated as indicated by a significant increase in vasodilatory potency (EC50 GTN + low SIL: 0.019 microM, EC50 GTN + high SIL: 0.002 microM; both P < 0.01 vs. GTN). In contrast, SIL did not potentiate the vasodilatory effect of NEB (EC50 NEB + low SIL: 5.01 microM, EC50 NEB + high SIL: 3.2 microM; n.s. vs. NEB). CONCLUSIONS: These data demonstrate that SIL does not potentiate NEB-induced vasodilation in vitro. These findings indicate that the interaction between SIL and NO-donators/organic nitrates does not apply to the NO-liberating properties of NEB. Our findings suggest that SIL may safely be used in hypertensive patients treated with NEB.  相似文献   
999.
Voltage-gated ion channels are main players involved in fast synaptic events. However, only slow intracellular mechanisms have so far been described for controlling their localization as real-time visualization of endogenous voltage-gated channels at high temporal and spatial resolution has not been achieved yet. Using a specific extracellular antibody and quantum dots we reveal and characterize lateral mobility as a faster mechanism to dynamically control the number of endogenous ether-a-go-go (Eag)1 ion channels inside synapses. We visualize Eag1 entering and leaving synapses by lateral diffusion in the plasma membrane of rat hippocampal neurons. Mathematical analysis of their trajectories revealed how the motion of Eag1 gets restricted when the channels diffuse into the synapse, suggesting molecular interactions between Eag1 and synaptic components. In contrast, Eag1 channels switch to Brownian movement when they exit synapses and diffuse into extrasynaptic membranes. Furthermore, we demonstrate that the mobility of Eag1 channels is specifically regulated inside synapses by actin filaments, microtubules and electrical activity. In summary, using single-particle-tracking techniques with quantum dots nanocrystals, our study shows for the first time the lateral diffusion of an endogenous voltage-gated ion channel in neurons. The location-dependent constraints imposed by cytoskeletal elements together with the regulatory role of electrical activity strongly suggest a pivotal role for the mobility of voltage-gated ion channels in synaptic activity.  相似文献   
1000.

Background

Recent studies demonstrated an association of STAT4 variants with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), indicating that multiple autoimmune diseases share common susceptibility genes. We therefore investigated the influence of STAT4 variants on the susceptibility and phenotype of inflammatory bowel diseases (IBD) in a large patient and control cohort.

Methodology/Principal Findings

Genomic DNA from 2704 individuals of Caucasian origin including 857 patients with Crohn''s disease (CD), 464 patients with ulcerative colitis (UC), and 1383 healthy, unrelated controls was analyzed for seven SNPs in the STAT4 gene (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694, rs10174238). In addition, a detailed genotype-phenotype analysis was performed. Our analysis revealed an association of the STAT4 SNP rs7574865 with overall decreased susceptibility to CD (p = 0.047, OR 0.86 [95% CI 0.74–0.99]). However, compared to CD patients carrying the wild type genotype, the STAT4 SNP rs7574865 was significantly associated with early CD onset (p = 0.021) and colonic CD (p = 0.008; OR = 4.60, 95% CI 1.63–12.96). For two other STAT4 variants, there was a trend towards protection against CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.74–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). In contrast, we did not observe any association with UC susceptibility. Evidence for weak gene-gene interaction of STAT4 with the IL23R SNP rs11209026 was lost after Bonferroni correction.

Conclusions/Significance

Our results identified the STAT4 SNP rs7574865 as a disease-modifying gene variant in colonic CD. However, in contrast to SLE and RA, the effect of rs7574865 on CD susceptibility is only weak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号