首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6906篇
  免费   620篇
  国内免费   1篇
  2023年   27篇
  2022年   66篇
  2021年   132篇
  2020年   83篇
  2019年   106篇
  2018年   109篇
  2017年   107篇
  2016年   166篇
  2015年   312篇
  2014年   323篇
  2013年   431篇
  2012年   552篇
  2011年   509篇
  2010年   367篇
  2009年   268篇
  2008年   434篇
  2007年   390篇
  2006年   376篇
  2005年   352篇
  2004年   334篇
  2003年   326篇
  2002年   265篇
  2001年   108篇
  2000年   88篇
  1999年   94篇
  1998年   69篇
  1997年   74篇
  1996年   69篇
  1995年   60篇
  1994年   40篇
  1993年   51篇
  1992年   62篇
  1991年   56篇
  1990年   44篇
  1989年   41篇
  1988年   34篇
  1987年   32篇
  1986年   27篇
  1985年   44篇
  1984年   39篇
  1983年   33篇
  1982年   30篇
  1981年   29篇
  1980年   24篇
  1979年   35篇
  1978年   29篇
  1977年   28篇
  1974年   30篇
  1973年   22篇
  1972年   18篇
排序方式: 共有7527条查询结果,搜索用时 15 毫秒
71.
72.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   
73.
The nicotianamine-deficient mutant chloronerva resembles phenotypically an Fe-deficient plant despite the high accumulation of Fe in the leaves, whereas if suffers from Cu deficiency in the shoot. Two-dimensional electrophoretic separation of proteins from root tips and leaves of wild-type Lycopersicon esculentum Mill. cv Bonner Beste and the mutant grown with and without Fe showed a number of consistent differences. In root tips of the Fe-deficient wild type and the Fe-sufficient as well as the Fe-deficient mutant, the expression of glyceraldehyde-3-phosphate dehydrogenase, formate dehydrogenase, and ascorbate peroxidase was increased. In leaves of the Fe-sufficient and -deficient mutant, Cu-containing chloroplastic and cytosolic superoxide dismutase (Cu-Zn) and plastocyanin (Cu) were nearly absent. This low plastocyanin content could be restored by supplying Cu via the xylem, but the superoxide dismutase levels could not be increased by this treatment. The differences in the protein patterns between wild type and mutant indicate that the apparent Fe deficiency of mutant plants led to an increase in enzymes involved in anaerobic metabolism as well as enzymes involved in stress defense. The biosynthesis of plastocyanin was diminished in mutant leaves, but it was differentially induced by increased Cu content.  相似文献   
74.
Atmospheric ammonia (NH3) from various anthropogenic sources has become a serious problem for natural vegetation. Ammonia not only causes changes in plant nitrogen metabolism, but also affects the acid-base balance of plants. Using the pH-sensitive fluorescent dyes pyranine and esculin, cytosolic and vacuolar pH changes were measured in leaves of C3 and C4 plants exposed for brief periods to concentrations of NH3 in air ranging from 1.33 to 8.29 mol NH3 · mol-1 gas (0.94–5.86 mg · m-3). After a lag phase, uptake of NH3 from air at a rate of 200 nmol NH3 · m - 2 leaf area · s- 1 into leaves of Zea mays L. increased pyranine fluorescence indicating cytosolic alkalinisation. The increase was much larger in the dark than in the light. In illuminated leaves of the C3 plant Pelargonium zonale L. and the C4 plants Z. mays and Amaranthus caudatus L., NH3-dependent cytosolic alkalinisation was particularly pronounced when CO2 was supplied at very low levels (16 or 20 mol CO2 · mol- 1 gas, containing 210 mmol O2 · mol- 1 gas). An increase in esculin fluorescence, which was smaller than that of pyranine, was indicative of trapping of some of the NH3 in the vacuoles of leaves of Spinacia oleracea L. and Z. mays. Photosynthesis and transpiration remained unchanged during exposure of illuminated leaves to NH3, yielding an influx of 200 nmol NH3 · m-2 leaf area · s-1 for up to 30 min, the longest exposure time used. Both CO2 and O2 influenced the extent of cytosolic alkalinisation. At 500 mol CO2 · mol-1 gas the cytosolic alkalinisation was suppressed more than at 16 or 20 mol CO2 · mol-1 gas. The suppressing effect of CO2 on the NH3induced alkalinisation was larger in illuminated leaves of the C4 plants Z. mays and A. caudatus than in leaves of the C3 plant P. zonale. A reduction of the O2 concentration from 210 to 10 mmol O2 · mol -1 gas, which inhibits photorespiration, increased the NH3induced cytosolic alkalinisation in C3 plants. Suppression by CO2 or O2 of the alkaline pH shift caused by the dissolution and protonation of NH3 in queous leaf compartments, and possibly by the production of organic compounds synthesised from atmospheric NH3, indicates that NH3 which enters leaves is rapidly assimilated if photosynthesis or photorespiration provide nitrogen acceptor molecules.This work was supported by the Biotechnology and Biological Sciences Research Council and the Deutsche Forschungsgemein-schaft within the framework of the research of Sonderforschun-gsbreich 251 of the University of Würzburg. We are grateful to Dr. B. Wollenweber (The Royal Veterinary and Agricultural University, Denmark) for discussions.  相似文献   
75.
The intracellular compartmentation of carbonic anhydrase (CA; EC 4.2.1.1), an enzyme that catalyses the reversible hydration of CO2 to bicarbonate, has been investigated in potato (Solanum tuberosum L.) leaves. Although enzyme activity was mainly located in chloroplasts (87% of total cellular activity), significant activity (13%) was also found in the cytosol. The corresponding CA isoforms were purified either from chloroplasts or crude leaf extracts, respectively. The cytosolic isoenzyme has a molecular mass of 255 000 and is composed of eight identical subunits with an estimated M r of 30000. The chloroplastic isoenzyme (M r 220000) is also an octamer composed of two different subunits with M r estimated at 27 000 and 27 500, respectively. The N-terminal amino acid sequences of both chloroplastic CA subunits demonstrated that they were identical except that the M r-27 000 subunit was three amino acids shorter than that of the M r-27 500 subunit. Cytosolic and chloroplastic CA isoenzymes were found to be similarly inhibited by monovalent anions (Cl, I, N 3 - and NO 3 - ) and by sulfonamides (ethoxyzolamide and acetozolamide). Both CA isoforms were found to be dependent on a reducing agent such as cysteine or dithiothreitol in order to retain the catalytic activity, but 2-mercaptoethanol was found to be a potent inhibitor. A polyclonal antibody directed against a synthetic peptide corresponding to the N-terminal amino acid sequence of the chloroplastic CA monomers also recognized the cytosolic CA isoform. This antibody was used for immunocytolocalization experiments which confirmed the intracellular compartmentation of CA: within chloroplasts, CA is restricted to the stroma and appears randomly distributed in the cytosol.Abbreviations BSA bovine serum albumin - CA carbonic anhydrase - PMSF phenylmethylsulphonyl fluoride - BAM benzamidine - DTT dithiothreitol - 2-ME 2-mercaptoethanol - PVDF polyvinylidene difluoride The authors thanks P. Carrier and Dr. B. Dimon for technical assistance with the mass-spectrometry measurements.  相似文献   
76.
Bavaricin MN was purified from Lactobacillus sake culture supernatant 135-fold with a final yield of 11%. Sequence analysis revealed bavaricin MN to be a 42-amino-acid peptide having a molecular weight of 4,769 and a calculated pI of 10.0. Computer analysis indicated that the C-terminal region may form an alpha-helical structure with an amphipathic nature deemed important in the interaction of bacteriocins with biological membranes. Bavaricin MN rapidly depleted the membrane potential (delta p) of energized Listeria monocytogenes cells in a concentration-dependent fashion. At a bavaricin MN concentration of 9.0 micrograms/ml, the delta p decreased by 85%. Both the electrical potential (delta psi) and Z delta pH components of the delta p were depleted, and this depletion was not dependent on a threshold level of proton motive force. In addition to studying the effect of bavaricin MN on the delta p of vegetative cells, bavaricin MN-induced carboxyfluorescein (CF) efflux from L. monocytogenes-derived lipid vesicles was also characterized. Bavaricin MN-induced CF leakage was also concentration dependent with an optimum of pH 6.0. The rate of CF efflux was 63% greater in lipid vesicles in which a delta psi was generated compared with that in lipid vesicles in the absence of a delta psi.  相似文献   
77.
Canalization describes the process by which phenotypic variation is reduced by developmental mechanisms. A trait can be canalized against environmental or genetic perturbations. Stabilizing selelction should favor improved canalization, and the degree of a trait's canalization should be positively correlated with its impact on fitness. Here we report, for Drosophila melanogaster, measurements of environmental canalization for five fitness components. We compare them with measurements of genetic canalization, and we discuss the impact of inbreeding on both. In three experiments we measured the variation of fitness components within lines nested within temperature, treatment, and experiment. Lines differed in the position of a P element insert or in genetic background. Within lines flies were genetically nearly identical. We designated trait variation within lines as environmental canalization. The canalization of the traits increased with their impact on fitness, and the pattern was similar to that found for the canalization of fitness components against genetic differences, measured as the variation among lines nested within temperature, treatment, and experiment. This suggests that developmental mechanisms buffer the phenotype against both genetic and environmental disturbance. The results also suggest, less strongly, that inbreeding weakens canalization.  相似文献   
78.
Cleavage and kinetic studies have been carried out using commercially obtained H-Tyr(tBu)-5-(4′-aminomethyl-3′,5′-dimethoxyphenoxy)valeric acid-TentaGelS (H-Tyr(tBu)-4-ADPV-TentaGelS) and H-Tyr (tBu)-4-ADPV-Ala-aminomethyl-resin (H-Tyr(tBu)-4-ADPV-AM-resin) prepared from commercially available resin and loaded with commercially available Fmoc-4-ADPV-OH amide anchor. Cleavage with pure trifluoroacetic acid (TFA) gave the intermediate H-Tyr-4-ADPV-NH2, which was then degraded to H-Tyr-NH2, and cleavage with TFA/dichloromethane (1:9) yielded H-Tyr-4-ADPV-NH2 which could be isolated in preparative amounts. Cleavage reactions with 15N-labelled H-Ala-4-ADPV-[15N]-Gly-AM-resin yielded the intermediate H-Ala-4-ADPV-NH2, which contained no 15N as demonstrated by 1H-NMR. The analysis of the commercial Fmoc-4-ADPV-OH amide anchor showed the presence of Fmoc-4-ADPV-4-ADPV-OH as an impurity in high amounts. This dimeric anchor molecule is the cause of formation of the anchor-linked peptide intermediate obtained during the cleavage from the resin. The particularly high acid-lability of the amide bond between the two ADPV moieties was utilized to synthesize sidechain and C-terminally 4-ADPV protected pentagastrin on a double-anchor resin, and to cleave it using 5% trifluoroacetic acid in dichloromethane. This method may offer a new way for the synthesis of protected peptide amides with improved solubility to be used in fragment condensation.  相似文献   
79.
Abstract. Altitudinal and latitudinal distribution limits of trees are mainly controlled by temperature. Therefore climate warming is expected to induce upslope or poleward migrations. In the Swiss Central Alps, summers in the period 1982-1991 were on average 0.8 °C warmer than those of the period 30 yr before. We investigated whether populations of conifers at the montane Pinus sylvestris-Pinus cembra ecocline exhibit demographic trends in response to that warming. We found no evidence for this. Young seedlings of Pinus sylvestris, the species which is expected to expand its range upward in a warmer climate, were virtually absent from all sites, whereas large fractions of Pinus cembra populations were observed in the seedling and juvenile categories even below the present lower distribution limit of adult trees. This suggests that there are no major altitudinal shifts in response to the recent sequence of warmer summers. Germination and seedling survival trials with Pinus sylvestris suggest that temperature per se would not exclude this species even from establishing at the current treeline in the Swiss Central Alps. Similar results were found at the polar treeline. Phytotron tests of seedling survival showed much less drought resistance in Pinus sylvestris than in Pinus cembra which is in contrast to their phytogeographic distributions. Thus, the montane pine ecocline in the Swiss Central Alps seems to be stabilized by species interactions and may not be directly responsive to moderate climatic change, which needs to be taken into account in predictive attempts.  相似文献   
80.
Snow Finches and Mountain-steppe Sparrows differ in habitat selection, feeding, social and vocal behaviour. For these reasons, separation of the genusMontifringilla intoMontifringilla andPyrgilauda is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号